How do you solve for multiple constants given the wave functions at the boundary?

Danielk010
Messages
35
Reaction score
4
Homework Statement
In the region 0 ≤ x ≤ a, a particle is described by
the wave function ψ1(x) = ##−b(x^2 − a^2 )##. In the region
a ≤ x ≤ w, its wave function is ψ2(x) = ##(x − d)^2 − c##. For
x ≥ w, ψ3(x) = 0. (a) By applying the continuity conditions
at x = a, find c and d in terms of a and b. (b) Find w in terms of
a and b.
Relevant Equations
ψ1(x) = ##−b(x^2 − a^2 )##. 0 ≤ x ≤ a
ψ2(x) = ##(x − d)^2 − c##. a ≤ x ≤ w
ψ3(x) = 0 x ≥ w
From my understanding, you can equate ψ1(x) and ψ2(x) at the boundary of x = a, so I plugged in the values of a into x for both equations and I got ψ1(x) = 0 and ψ2(x) = ## (a-d)^2-c ##. I am a bit stuck on where to go from here.
 
Physics news on Phys.org
Danielk010 said:
and I got ψ1(x) = 0 and ψ2(x) = ## (a-d)^2-c ##. I am a bit stuck on where to go from here.
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
 
BvU said:
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
The continuity for the first derivative of which wave function?
 
BvU said:
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
I got it. Thank you so much for the help
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top