How do you solve for multiple constants given the wave functions at the boundary?

Danielk010
Messages
35
Reaction score
4
Homework Statement
In the region 0 ≤ x ≤ a, a particle is described by
the wave function ψ1(x) = ##−b(x^2 − a^2 )##. In the region
a ≤ x ≤ w, its wave function is ψ2(x) = ##(x − d)^2 − c##. For
x ≥ w, ψ3(x) = 0. (a) By applying the continuity conditions
at x = a, find c and d in terms of a and b. (b) Find w in terms of
a and b.
Relevant Equations
ψ1(x) = ##−b(x^2 − a^2 )##. 0 ≤ x ≤ a
ψ2(x) = ##(x − d)^2 − c##. a ≤ x ≤ w
ψ3(x) = 0 x ≥ w
From my understanding, you can equate ψ1(x) and ψ2(x) at the boundary of x = a, so I plugged in the values of a into x for both equations and I got ψ1(x) = 0 and ψ2(x) = ## (a-d)^2-c ##. I am a bit stuck on where to go from here.
 
Physics news on Phys.org
Danielk010 said:
and I got ψ1(x) = 0 and ψ2(x) = ## (a-d)^2-c ##. I am a bit stuck on where to go from here.
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
 
BvU said:
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
The continuity for the first derivative of which wave function?
 
BvU said:
No. You got ψ1(a) = 0 and ψ2(a) = ## (a-d)^2-c ##. Equating ψ1 and ψ2 at x=a means you have ψ1(a) = ψ2(a)

Then: what about continuity of the first derivative ?

##\ ##
I got it. Thank you so much for the help
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top