How Do You Solve the Integral of 3x/(4x-1)?

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Integral Ln
Click For Summary
SUMMARY

The integral of the function 3x/(4x-1) can be solved using substitution and partial fraction decomposition techniques. The solution is expressed as \(\frac{3}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)+C\), where C is the constant of integration. An alternative method involves letting \(u = 4x - 1\), leading to the integral \(\frac{3}{16}\int \frac{u+1}{u}du\), which simplifies to the same result. Both methods yield equivalent expressions for the integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of logarithmic functions
  • Experience with partial fraction decomposition
NEXT STEPS
  • Study integration techniques involving substitution in detail
  • Learn about partial fraction decomposition in calculus
  • Explore logarithmic integration methods
  • Practice solving integrals with rational functions
USEFUL FOR

Students of calculus, mathematics educators, and anyone looking to enhance their skills in solving integrals, particularly those involving rational functions and logarithmic expressions.

Yankel
Messages
390
Reaction score
0
Hello

I am trying to solve the integral of the function:

3x/(4x-1)

Need some help with it, I am stuck...

Thanks !
 
Physics news on Phys.org
Yankel said:
Hello

I am trying to solve the integral of the function:

3x/(4x-1)

Need some help with it, I am stuck...

Thanks !

[math]\displaystyle \begin{align*} \int{\frac{3x}{4x-1}\,dx} &= \frac{3}{4}\int{\frac{4x}{4x-1}\,dx} \\ &= \frac{3}{4}\int{\frac{4x-1 + 1}{4x - 1}\,dx} \\ &= \frac{3}{4}\int{1 + \frac{1}{4x-1}\,dx} \\ &= \frac{3}{4} \left( x + \frac{1}{4}\ln{ | 4x - 1 | } \right) + C \end{align*}[/math]
 
Prove It said:
[math]\displaystyle \begin{align*} \int{\frac{3x}{4x-1}\,dx} &= \frac{3}{4}\int{\frac{4x}{4x-1}\,dx} \\ &= \frac{3}{4}\int{\frac{4x-1 + 1}{4x - 1}\,dx} \\ &= \frac{3}{4}\int{1 + \frac{1}{4x-1}\,dx} \\ &= \frac{3}{4} \left( x + \frac{1}{4}\ln{ | 4x - 1 | } \right) + C \end{align*}[/math]

did you use partial fraction here?
 
letting u = 4x-1, u+1/4 = x
getting the derivative of u, du = 4dx, dx = 1du/4

now plug those values
∫{[3(u+1)/4]/4u]}du
∫[(3u+3)/16u]du
3/16(∫du+∫1/u*du)

3/16*u+3/16*ln|u|+c

3/16*(4x-1)+3/16*ln|4x-1| --- this is what i get when i use substitution method. am I correct?
 
paulmdrdo said:
did you use partial fraction here?

Yes, it can be thought of as a partial fraction decomposition of \(\frac{4x}{4x-1}\). An easy method to find the partial fractions in this case is the technique used by Prove It; writing the numerator as \(4x-1+1\).

paulmdrdo said:
letting u = 4x-1, u+1/4 = x
getting the derivative of u, du = 4dx, dx = 1du/4

now plug those values
∫{[3(u+1)/4]/4u]}du
∫[(3u+3)/16u]du
3/16(∫du+∫1/u*du)

3/16*u+3/16*ln|u|+c

3/16*(4x-1)+3/16*ln|4x-1| --- this is what i get when i use substitution method. am I correct?

Yes, your method is perfect. Note that after a few algebraic simplifications you arrive at the same result obtained by Prove It. :)

\[\frac{3}{16}(4x-1)+\frac{3}{16}\ln|4x-1|+C=\frac{3}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)+C-\frac{3}{16}\]

\(A=C-\frac{3}{16}\) is an arbitrary constant. Therefore,

\[\frac{3}{16}(4x-1)+\frac{3}{16}\ln|4x-1|+C=\frac{3}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)+A\]
 
What I would have done, equivalent to what Prove It and Sudharaka did, is let u= 4x- 1, the denominator. Then 4x= u+ 1 and x= (u+1)/4 and du= 4dx so that dx= (1/4)du.

The integral becomes
\int \frac{3\frac{u+1}{4}}{u}(du/4)= \frac{3}{16}\int \frac{u+1}{u}du= \frac{3}{16}\int 1+ \frac{1}{u}du
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K