How Do You Solve This Trigonometric Equation Involving Multiple Cosine Terms?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The equation $(2\cos x -1)(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=1$ can be solved by analyzing the individual cosine terms. Each term can be simplified to determine the values of x that satisfy the equation. The solution involves identifying the angles where the cosine function equals specific values derived from the equation, leading to a comprehensive set of solutions.

PREREQUISITES
  • Understanding of trigonometric identities and equations
  • Familiarity with the cosine function and its properties
  • Knowledge of angle transformations in trigonometry
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Study the properties of the cosine function and its periodicity
  • Learn about solving trigonometric equations using identities
  • Explore angle transformations and their applications in trigonometry
  • Investigate advanced techniques for solving polynomial equations involving trigonometric terms
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex trigonometric equations will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation below:

$(2\cos x -1)(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=1$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem.:(

You can find the solution below:

Note that

$\begin{align*}4\cos ^2 x-1&=2(2\cos^2 x-1)+1\\&=2\cos 2x+1---(*)\end{align*}$

Now, multiply both sides of the given equation by $2\cos x+1$, we see that

$\underbrace{{\color{orange}(2\cos x+1)}(2\cos x -1)}(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)={\color{orange}(2\cos x+1)}(1)$

$\underbrace{(4\cos^2 x-1)}_{*}(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 2x+1)(2\cos 2x -1)}(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(4\cos^2 2x-1)}_{*}(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 4x+1)(2\cos 4x -1)}(2\cos 8x -1)=2\cos x+1$

$\underbrace{(4\cos^2 4x-1)}_{*}(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 8x+1)(2\cos 8x -1)}=2\cos x+1$

$\underbrace{(4\cos^2 8x-1)}_{*}=2\cos x+1$

$2\cos 16x+1=2\cos x+1$

$\cos 16x=\cos x---(1)$

If $2\cos x+1\ne 0$, then equation (1) is equivalent to the original equation. Solving (1) give

$16x=\pm x+2k\pi$ where $k\in Z$. Hence $x=\dfrac{2k\pi}{15}$ or $\dfrac{2k\pi}{17}$.

But, if $2\cos x+1=0$, then solving it gives

$\cos x=\cos 2x=\cos 4x=\cos 8x=-\dfrac{1}{2}$ or $x=\pm \dfrac{2\pi}{3}+2m\pi,\,\,m\in Z$

But $(2\cos x -1)(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=(-2)^4=16 \ne1$

Therefore, the solution set of the given equation is

$\left\{x:x=\dfrac{2k\pi}{15} \text{or}\,\,\dfrac{2k\pi}{17}\,\,\text{but}\,\,x\ne\pm \dfrac{2\pi}{3}+2m\pi,\,\,k,\,m\in Z \right\}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K