MHB How Do You Solve This Trigonometric Equation Involving Multiple Cosine Terms?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The equation to solve is (2cos x - 1)(2cos 2x - 1)(2cos 4x - 1)(2cos 8x - 1) = 1. The discussion focuses on finding values of x that satisfy this equation, which involves multiple cosine terms. Participants explore various methods and transformations to simplify the equation. The solution process may include using trigonometric identities and properties of cosine functions. The thread emphasizes the importance of collaborative problem-solving in tackling complex trigonometric equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation below:

$(2\cos x -1)(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=1$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem.:(

You can find the solution below:

Note that

$\begin{align*}4\cos ^2 x-1&=2(2\cos^2 x-1)+1\\&=2\cos 2x+1---(*)\end{align*}$

Now, multiply both sides of the given equation by $2\cos x+1$, we see that

$\underbrace{{\color{orange}(2\cos x+1)}(2\cos x -1)}(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)={\color{orange}(2\cos x+1)}(1)$

$\underbrace{(4\cos^2 x-1)}_{*}(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 2x+1)(2\cos 2x -1)}(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(4\cos^2 2x-1)}_{*}(2\cos 4x -1)(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 4x+1)(2\cos 4x -1)}(2\cos 8x -1)=2\cos x+1$

$\underbrace{(4\cos^2 4x-1)}_{*}(2\cos 8x -1)=2\cos x+1$

$\underbrace{(2\cos 8x+1)(2\cos 8x -1)}=2\cos x+1$

$\underbrace{(4\cos^2 8x-1)}_{*}=2\cos x+1$

$2\cos 16x+1=2\cos x+1$

$\cos 16x=\cos x---(1)$

If $2\cos x+1\ne 0$, then equation (1) is equivalent to the original equation. Solving (1) give

$16x=\pm x+2k\pi$ where $k\in Z$. Hence $x=\dfrac{2k\pi}{15}$ or $\dfrac{2k\pi}{17}$.

But, if $2\cos x+1=0$, then solving it gives

$\cos x=\cos 2x=\cos 4x=\cos 8x=-\dfrac{1}{2}$ or $x=\pm \dfrac{2\pi}{3}+2m\pi,\,\,m\in Z$

But $(2\cos x -1)(2\cos 2x -1)(2\cos 4x -1)(2\cos 8x -1)=(-2)^4=16 \ne1$

Therefore, the solution set of the given equation is

$\left\{x:x=\dfrac{2k\pi}{15} \text{or}\,\,\dfrac{2k\pi}{17}\,\,\text{but}\,\,x\ne\pm \dfrac{2\pi}{3}+2m\pi,\,\,k,\,m\in Z \right\}$.
 
Back
Top