lzkelley said:
You're on the right track - and you're using some really good arguments, but ultimately you're wrong, here's why: the "drift" caused by the increasing strength of the magnetic field is called the "grad-B drift" because it involves the Gradient of the magnetic field (B), I'm not sure if you're familiar with the gradient, but its a device that represents the change in something when its changing in more than just one direction (where we simply use the derivative).
Anyway! - the particle experiences a force proportional to the cross product between the gradient of B, and the B field itself, and is NOT DEPENDENT ON THE CHARGE OF THE PARTICLE ---> F = B x Grad(B) ---> which means that the force will be perpendicular to both the magnetic field lines, and the direction in which they are increasing in strength (towards the ends of the bottle). The force will be in the directed inwards (relative to the bottle) and a little bit in the plane of normal gyration, independent of what the charge is.
Hmm...~ lzkelley, I am not sure what you mean by gradient of the magnetic flux "vector" field. Last I checked, gradient cannot be applied onto a "vector" field function, but can be applied onto a "scalar" function. Do you mean by divergence of the magnetic flux "vector" field? If so then, By divergence theorem on magnetic flux vector field, due to the fact that magnetic monopole has yet to be discovered, the divergence of any naturally occurring phenomena currently known to man kind of magnetic flux vector field function yields the number zero. I am kind of confused following your kind response and the force equation you have kindly listed above: F = B x Grad(B). Please enlighten me, I like to understand things in various ways and look at things from different angles. Thank you :).
I will share my understanding to this question. The physical reasoning of a magnetic bottle mainly takes magnetic field line (check out this http://rt210.sl.psu.edu/phys_anim/EM/magnetic_bottle2_thm.gif" ) and Lorentz Force Law. more specifically just the magnetic force portion: vector_F = q*cross(vector_v,vector_B); or
F = q*
vx
B. If you look at the picture I linked above which provides magnetic field lines, you should see that the magnetic field spreads out toward middle region(This means a decrease in magnetic flux intensity). This means in addition to the axial field component there is also radial component(Try hooking up two coils and pump some current in the same direction and same winding then use a compass to check field directions if you find my described situation unconvincing). The key to the charge accelerating in the axial direction depends on the radial component(Try crossing the velocity of a circular path charge with a radial field component then you will see a force in the axial direction). I think upto this point Yoran's question is partially answered. That is the crux in the charge accelerating in the axial direction I think, which is quite subtle to me at least when I first saw this.
This part will address:
Yoran said:
Hi,
I'm wondering why charged particles stay trapped in a magnetic. Assume the magnetic bottle is oriented in the x-direction. Then a particle will keep oscillating in the x-direction while making circle movements in the y- and z-direction.
But why does it oscillate in the x-direction? Since the magnetic force does no work on a particle because it is always directed perpendicular to the velocity, the kinetic force of the particle stays constant. When oscillating, there must be some point where the speed in the x-direction is zero, which means that the kinetic energy must change. How is that possible? I suppose the magnetic force alone can't be responsible for the oscillation?
Thank you.
Does kinetic energy change? The answer is no, it does not. Is magnetic force responsible completely for the oscillation? Yes, it does. Having hopefully convinced you the existence of a radial field component, try crossing the radial magnetic flux component with the charge with axial velocity should yield a force decelerating the charge in the circular direction, or to be more technically correct, a force pointing in the direction tangential but negative in magnitude to the circular path component of the charge, which implies the charge slows down its circular motion. That means even though the charge gains axial component of the velocity, the circular component(alright this isn't a good technical description of the velocity in THAT direction but you get my point) slows down, if you actually perform the calculation this yields a net change of 0 Joules in energy. Therefore, as Izkelley has generiously pointed out in his/her post near the beginning of this entire conversation, no work has actually been done by the magnetic field, which obeys the observation given in various textbooks. Hope that I am not too far from being correct, and if I just so happen to be correct, then I hope I've made it clear and my point across to you my comrades in Physics~ :)
Edit 1:
Also if you understand what I am referring to by the circular path thingy in the last paragraph. Please kindly let me know how I can phrase it better because my language has failed me miserably in this case... sadly enough T_T~
Edit 2:
Nevermind, I think I'll just call it the phi component~