How Does a Phase Shift Affect the Mach-Zehnder Interferometer?

Click For Summary
SUMMARY

The discussion focuses on the effects of a phase shift in a Mach-Zehnder interferometer, particularly how an additional phase shift element affects the probability of detector A clicking. The probability is calculated as \( P(det A) = \frac{1}{2}(1 - \cos\phi) \), where \( \phi \) represents the phase shift. Participants also explore the implications of uniformly distributed random phase shifts on the detection probability, concluding that the average probability remains 0.5 when \( \phi \) is treated as a random variable.

PREREQUISITES
  • Understanding of quantum mechanics principles, particularly wave-particle duality.
  • Familiarity with the Mach-Zehnder interferometer setup and its operation.
  • Knowledge of linear algebra, specifically matrix operations related to quantum states.
  • Basic probability theory, particularly concepts of random variables and uniform distributions.
NEXT STEPS
  • Study the mathematical foundations of quantum interference in Mach-Zehnder interferometers.
  • Learn about the impact of phase shifts on interference patterns in optical systems.
  • Explore the concept of random variables in quantum mechanics and their implications for measurement outcomes.
  • Investigate the relationship between phase shifts and visibility of interference fringes in optical experiments.
USEFUL FOR

Students and researchers in quantum mechanics, optical engineering, and anyone interested in the principles of interference and probability in quantum systems.

WWCY
Messages
476
Reaction score
15

Homework Statement



Hi all, I'm working on the following problem and would like some help. Many thanks in advance!

The Figure below presents the Mach-Zehnder interferometer with an additional phase shift element in the upper path.
$$\left( \begin{array}{cc}
e^{i\phi} & 0 \\
0 & 1
\end{array} \right)$$
with ##\phi## as the phase.
a) Calculate the probability that detector A clicks as a function of ##\phi##

b) In practice there is always some random phase shift even in the absence of the additional element in the upper path. It comes from misalignment of beam splitters and mirrors. Assume ##\phi## is a uniformly distributed random variable. What is the probability now that detector A clicks as a function of ##\phi##?

Screen Shot 2018-02-09 at 9.10.36 PM.png


Homework Equations

The Attempt at a Solution



a) The following vectors define the "right-moving" and "upwards-moving" photon states
$$|r> = (1,0)$$
$$|u> = (0,-1)$$
The initial right mover hits the beam splitter (defined by the matrix below) and the resulting mixed state is
$$

\left( \begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array} \right)
%
\left( \begin{array}{cc}
1 \\
0
\end{array} \right)
= \frac{1}{\sqrt{2}} \big ( (1,0) + (0,-1) \big)
$$
Both beams then hit mirrors, so I apply the mirror (matrix below) to the mixed state
$$
\left( \begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array} \right)
%
\left( \begin{array}{cc}
1/\sqrt{2} \\
-1/\sqrt{2}
\end{array} \right)
=\frac{1}{\sqrt{2}} \big ( (-1,0) + (0,-1) \big)
$$
Only the top beam hits the phase shifter
$$
\frac{-1}{\sqrt{2}}
\left( \begin{array}{cc}
e^{i\phi} & 0 \\
0 & 1
\end{array} \right)
%
\left( \begin{array}{cc}
1 \\
0
\end{array} \right)
= \frac{-1}{\sqrt{2}} \big ( e^{i\phi},0 \big)
$$
Applying the beam-splitter to both states again yields
$$
\frac{-1}{\sqrt{2}}
\left( \begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array} \right)
%
\left( \begin{array}{cc}
e^{i\phi} \\
1
\end{array} \right)
= \frac{-1}{2} (e^{i\phi} + 1 \ , 1 - e^{i\phi} )$$

The probability of the detector "a" clicking is thus given by
$$| \frac{1 - e^{i\phi}}{2} |^2 = \frac{1}{2}(1 - \cos\phi )$$

b) I have not formally studied probability theory, but I'm assuming that the phrase "assume ##\phi## is a uniformly distributed random variable" just means that all ##\phi##'s are equally likely to occur. I'm also assuming that this phenomenon affects both paths, and to calculate it I'd apply the phase shifter to both "u" and "r" states after they hit the first mirror.

May I know if I have applied concepts correctly? Thanks in advance.

(Spotted some errors, hence the edits)
 

Attachments

  • Screen Shot 2018-02-09 at 9.10.36 PM.png
    Screen Shot 2018-02-09 at 9.10.36 PM.png
    8.3 KB · Views: 657
Last edited:
Physics news on Phys.org
Yes, assume a uniform random variable means that any phase between 0 and 360 degrees is equally likely.
 
Maybe it would be sufficient to only apply the random phase shift to one of the two photon states.
 
Thank you for your response.

Gene Naden said:
Maybe it would be sufficient to only apply the random phase shift to one of the two photon states.

May I know why this would be sufficient? Would that not mean that the photons taking one path is more "vulnerable" to random phase changes than the other?

Thank you!
 
Oh, sure. I was thinking that what counts is the relative phase between the two photons (causing interference), so that adding a random phase to both of them would not introduce more physics than adding phase to just one of them. Certainly, both paths would be vulnerable to random phase shift.
 
Gene Naden said:
Oh, sure. I was thinking that what counts is the relative phase between the two photons (causing interference), so that adding a random phase to both of them would not introduce more physics than adding phase to just one of them. Certainly, both paths would be vulnerable to random phase shift.

Thank you for the clarification!

With regards to part c), say I have correctly found that the probability of detector A clicking in part b) to be ##P(det A) = \frac{1}{2}(1 - \cos\phi)## which is bounded between 1 and 0. Does the fact that all ##\phi##'s being equally probable mean that ##P(det A)## in part c) is now 0.5, independent of ##\phi##?
 
I hope one of the mentors or advisers will weigh in on this. I am having some difficulty interpreting the problem. But your math seems OK. You have indicated that the probability of detection is ##\frac{1}{2}(1 - \cos\phi )##. The average of that, assuming ##\phi## is a random variable would be just ##\frac{1}{2}##.
 
Gene Naden said:
I hope one of the mentors or advisers will weigh in on this. I am having some difficulty interpreting the problem. But your math seems OK. You have indicated that the probability of detection is ##\frac{1}{2}(1 - \cos\phi )##. The average of that, assuming ##\phi## is a random variable would be just ##\frac{1}{2}##.

No worries, thank you very much!
 
I see nobody has picked up your thread, so I will go on with it. Basically, what is bothering me about this problem is that I expect they are trying to get at some kind of interference phenomena, which would produce visible interference fringes. That is what I saw with the interferometer in my optics class. But I don't see how to get that out of your equations. There has to be some kind of distance variable. So these doubts about the problem are why I said I hoped a mentor would come in.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
3K
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K