How Does Angular Velocity Affect Crane Boom Dynamics?

Click For Summary

Discussion Overview

The discussion revolves around the dynamics of a crane's telescopic boom, specifically how angular velocity affects the absolute acceleration of a point on the boom. Participants explore the relationships between angular velocity, tangential speed, and acceleration in a mechanical context, with a focus on applying relevant equations to determine the motion characteristics of the crane boom.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant describes the situation of a crane boom rotating with angular velocity and extending at a constant speed, expressing uncertainty about angular velocity calculations.
  • Another participant provides relevant equations for tangential and centripetal acceleration, explaining how to calculate the absolute acceleration of point B using these equations.
  • A third participant elaborates on the calculations for velocity and acceleration at point B, detailing the use of a coordinate system and the application of angular motion equations.
  • One participant suggests that the problem may be overly complicated and proposes a simpler approach by treating the crane base as an inertial reference frame, emphasizing the need to account for the changing radius as the boom extends.

Areas of Agreement / Disagreement

Participants express differing views on the complexity of the problem and the appropriateness of using certain equations. There is no consensus on the best approach to solve the problem, with multiple competing methods and interpretations presented.

Contextual Notes

Some participants highlight the need to consider the changing radius of the boom and the implications of using inertial versus non-inertial reference frames. There are unresolved mathematical steps and assumptions regarding the initial conditions and angular parameters.

Dustinsfl
Messages
2,217
Reaction score
5
The telescopic boom of a crane rotates with the angular velocity and rotation as indicated about point $A$.
At the same instant, the boom is extending with a constant speed of 0.5ft/s, measured relative to the boom.
Determine the magnitude and acceleration of the absolute acceleration of point $B$ at this instant.
I am not familiar with working with angular velocity.
[URL="http://http://img23.imageshack.us/img23/8895/telescope.png
 
Physics news on Phys.org
You have three equations that are relevant:
\begin{align*}
s &=\theta r\\
v_{\tan} &= \omega r\\
a_{\tan} &= \alpha r.
\end{align*}
Here $s$ is arc length, and $\theta$ is measured in radians. So you can see that the pattern here is "tangential variable is corresponding angular variable times the radius". Now the absolute acceleration of point B is going to be
$$a=\sqrt{a_{\tan}^{2}+a_{c}^{2}},$$
where $a_{\tan}$ is the tangential acceleration, and $a_{c}$ is the centripetal acceleration; the centripetal acceleration is given by
$$a_{c}=\frac{v_{\tan}^{2}}{r}=\omega^{2}\,r.$$

Also note that the angular velocity is a measure of how fast the angle $\theta$ is changing. That is,
$$\omega=\frac{d\theta}{dt}.$$
Also,
$$\alpha=\frac{d\omega}{dt}.$$
These are angular analogues to the linear variable case.

Is that enough to get you started?
 
Ackbach said:
You have three equations that are relevant:
\begin{align*}
s &=\theta r\\
v_{\tan} &= \omega r\\
a_{\tan} &= \alpha r.
\end{align*}
Here $s$ is arc length, and $\theta$ is measured in radians. So you can see that the pattern here is "tangential variable is corresponding angular variable times the radius". Now the absolute acceleration of point B is going to be
$$a=\sqrt{a_{\tan}^{2}+a_{c}^{2}},$$
where $a_{\tan}$ is the tangential acceleration, and $a_{c}$ is the centripetal acceleration; the centripetal acceleration is given by
$$a_{c}=\frac{v_{\tan}^{2}}{r}=\omega^{2}\,r.$$

Also note that the angular velocity is a measure of how fast the angle $\theta$ is changing. That is,
$$\omega=\frac{d\theta}{dt}.$$
Also,
$$\alpha=\frac{d\omega}{dt}.$$
These are angular analogues to the linear variable case.

Is that enough to get you started?
I have done it this way:
Is this correct? How would you do it your way?
Let the $y$ axis be along the line of $AB$, the $z$ axis come out of the page at $A$, and the $x$ axis run perpendicular to $y$ and $z$ from $A$.
That is, $A$ is the origin.
With this coordinate system, $\mathbf{v}_A = \mathbf{a}_A = 0$, $\omega_{AB} = -0.02\mathbf{k}\text{ rad}/\text{s}$, and $\dot{\omega}_{AB} = -0.01\mathbf{k}\text{ rad}/\text{s}^2$.
The position vector for $B$ is $\mathbf{r}_B = 60\mathbf{j}$, the relative velocity at $B$ is $\mathbf{v}_{\text{rel}} = 0.5\mathbf{j}\text{ ft}/\text{s}$, and the relative acceleration is $\mathbf{a}_{\text{rel}} = 0$.
The the velocity and magnitude at $B$ is
\begin{alignat*}{3}
\mathbf{v}_B & = & \mathbf{v}_A + \omega_{AB}\times\mathbf{r}_B + \mathbf{v}_{\text{rel}}\\
& = & 0 + -0.02\mathbf{k}\times 60\mathbf{j} + 0.5\mathbf{j}\\
& = & (1.2\mathbf{i} + 0.5\mathbf{j})\text{ ft}/\text{s}\\
\lVert\mathbf{v}_B\rVert & = & \sqrt{1.2^2 + 0.5^2}\\
& = & 1.3\text{ ft}/\text{s}
\end{alignat*}
The acceleration at $B$ is
\begin{alignat*}{3}
\mathbf{a}_B & = & \mathbf{a}_A + \dot{\omega}_{AB}\times\mathbf{r}_B + \omega_{AB}\times(\omega_{AB}\times\mathbf{r}_B) + 2\omega_{AB}\times\mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}\\
& = & 0 + -0.01\mathbf{k}\times 60\mathbf{j} + -0.02\mathbf{k}\times(-0.02\mathbf{k}\times 60\mathbf{j}) + -0.04\mathbf{k}\times 0.5\mathbf{j} + 0\\
& = & 0.6\mathbf{i} - 0.024\mathbf{j} + 0.02\mathbf{i}\\
& = & 0.62\mathbf{i} - 0.024\mathbf{j}
\end{alignat*}
 
I think you're making this more complicated than you need - although it is more complicated than I initially thought. You can assume that the base of the crane is an inertial reference frame - hence you do not need the equations for a non-inertial reference frame such as you used. However, you do need to account for the fact that $r$ is changing at a constant speed. You can simply write down $\mathbf{r}$ by using the following:
$$ r(t)=60+0.5t$$
and
$$ \mathbf{r}(t)=r(t) \langle \cos( \theta (t)), \sin( \theta (t)) \rangle.$$
Then simply write it all in and differentiate accordingly. You have
$$ \theta(t)= \theta_{0} +\omega_{0} \,t+ \frac{1}{2} \, \alpha \,t^{2}.$$
 

Similar threads

Replies
1
Views
1K
Replies
335
Views
16K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 24 ·
Replies
24
Views
22K
Replies
19
Views
3K
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
6K