How Does Boyle's Law Explain the Pressure-Volume Relationship of CO2?

Click For Summary

Discussion Overview

The discussion revolves around the application of Boyle's Law to understand the pressure-volume relationship of carbon dioxide (CO2) gas. Participants explore the mathematical formulation of Boyle's Law, its implications for gas behavior under varying conditions, and the calculations related to the volume of CO2 at specific pressures and temperatures.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Robert Boyle's law states that at constant temperature, the pressure of a fixed amount of gas varies inversely with its volume, expressed mathematically as $p ∝ \frac{1}{V}$.
  • Participants discuss the calculation of volume using the ideal gas law, with one participant noting a specific example for 0.09 moles of CO2 at 300 K.
  • There is confusion regarding the values presented in a table, particularly the second column's volume representation of $112 \times 10^{-3} m^3$ and its conversion to liters.
  • One participant suggests that the pressure value used in the ideal gas law calculation is not standard, proposing the use of standard temperature and pressure (STP) values instead.
  • Another participant points out a potential mistake in the table, suggesting that the pressure unit should be $10^3\,Pa$ to align with the other values presented.
  • There is mention of the difference in predicted volume between ideal gas law calculations and real gas behavior, noting that real gases can exhibit slight deviations from ideal predictions.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the values in the table and the appropriate conditions for calculations. There is no consensus on the correct interpretation of the table or the calculations presented.

Contextual Notes

The discussion highlights limitations in the clarity of the table provided, including potential errors in units and assumptions about standard conditions. The calculations depend on the definitions of pressure and temperature used, which may vary.

WMDhamnekar
MHB
Messages
381
Reaction score
30
Robert Boyle's law states that at constant temperature, the pressure of fixed amount ( i-e number of moles n) of gas varies inversely with its volume. Mathematically, it can be written as $p ∝ \frac1V $(at constant T and n) $\Rightarrow p = k_1 \times \frac1V $ where $k_1$is a proportionality constant.

The value of constant $k_1$ depends upon the amount of the gas, temperature of the gas and the units in which p and V are expressed. $p \times V= k_1$

If a fixed amount of gas at constant temperature T occupying volume $V_1$ at pressure $p_1$ undergoes expansion, so that volume becomes $V_2$ and pressure becomes $p_2,$ then according to Boyle’s law : $p_1 \times V_1 = p_2 \times V_2=$ constant $\Rightarrow \frac{p_1}{p_2} = \frac{V_2}{V_1}.$

It should be noted that volume V of the gas doubles, if pressure is halved.

The following table 5.1 gives effect of pressure on volume of 0.09 mol of CO₂ at 300 K. but i didn't understand these calculated values given in the second column. I also didn't understand the meanings of headings given to each column. If any member can explain me how the values in the second column is computed, may answer to this question.

Effect of pressure on CO2.png
My understanding:

$V= \frac{nRT}{p}\tag {1}$ where n, R, T, p are constants. n stands for number of moles, R is gas constant, T is temperature and p is pressure.

Putting the given values in this equation (1),we get 11.2 liters =$\frac {0.09 mol \times 8,314 J k^{-1} mol^{-1}\times 300 K }{20000 Pa}$

But in the second column, it is $112 \times 10^{-3} m^3= 112 $ liters . How is that? Where i am wrong?Can we compute the volume of $CO_2$ in another way? For example, by using this known information that one mole of $CO_2$ molecules features a volume of 22.414 liters at standard T and p. So, 0.09 mol of $CO_2$ features a volume of $0.09 \times 22.414= 2.01726 $ liters at STP.
 
Last edited:
Mathematics news on Phys.org
Which table are we talking about?
Otherwise I can only guess why it would show $112\times 10^{-3}\,m^3$.

Either way, your substitution in the ideal gas law (equation 1) has $p=20\,000\,Pa$, which is not standard pressure.
If instead we substitute the STP values $p_0=100\,000\,Pa$ and $T_0=273.15\,K$, we find:
$$\frac {0.09\, mol \times 8.314\, J K^{-1} mol^{-1}\times 273.15\, K }{100\,000\, Pa} = 2.04\, L$$
which agrees with what you found using the molar volume at STP.
Note that the ideal gas law predicts a slightly higher value (1%), which is because a real gas is slightly more cohesive than an ideal gas.
 
Last edited:
Klaas van Aarsen said:
Which table are we talking about?
Otherwise I can only guess why it would show $112\times 10^{-3}\,m^3$.

Either way, your substitution in the ideal gas law (equation 1) has $p=20\,000\,Pa$, which is not standard pressure.
If instead we substitute the STP values $p_0=100\,000\,Pa$ and $T_0=273.15\,K$, we find:
$$\frac {0.09\, mol \times 8.314\, J K^{-1} mol^{-1}\times 273.15\, K }{100\,000\, Pa} = 2.04\, L$$
which agrees with what you found using the molar volume at STP.
Note that the ideal gas law predicts a slightly higher value (1%), which is because a real gas is slightly more cohesive than an ideal gas.

Hello,

Sorry. I forgot to add the table. Now, i have added it to my question.
 
It looks as a mistake in the table. I believe the unit in the pressure column should be $10^3\,Pa$. Then the other 3 columns have the correct values.
We can verify with either molar volume or ideal gas law at $T=300\,K$, or we can look it up with an online calculator or table.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K