A How does graphene Fermi velocity v_F link to the envelope propagation?

  • A
  • Thread starter Thread starter PRB147
  • Start date Start date
  • Tags Tags
    Graphene
PRB147
Messages
122
Reaction score
0
my questions stemmed from reading the article in Physica E. Vol. 86, 10-16.
(https://www.sciencedirect.com/science/article/pii/S1386947716311365)

Why does the graphene Fermi velocity ##v_F## appear in Eq.(11) in this article,?
Eq.(11) is as follows:
$$
\frac{\partial \Omega_p(z,t)}{\partial z}+\frac{1}{v_F}\frac{\partial \Omega_p(z,t)}{\partial t}=i\alpha\gamma_3\rho_{21}(z,t)
$$
where ##\alpha=\frac{N\omega_1|\mu_{21}\cdot e_p|^2}{2\epsilon_r \hbar v_F \gamma_3}##,
and ##\Omega_p(z,t)=\Omega^0_p\eta (z,t)##; ##\eta(0,\tau)=\Omega^0_p e^{-[(\tau-\sigma)/\tau_0]^2}##.

As is well known, the graphene Fermi velocity ##v_F## comes from the nearest
neighboring carbon atom hopping #t# and their distance #a#, and even if slowly varying envelope
approximation(SVEA) has been considered, the group velocity of the pulse cannot be the Fermi velocity.

Could any professionals provide help, either guide me the derivation of the equation or provide
some effective references which can be used to derive the equation.
 
Last edited:
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Replies
0
Views
5K
4
Replies
175
Views
25K
Replies
3
Views
2K
Back
Top