How does gravity torque affect the position control system of a robot arm?

Click For Summary
The discussion focuses on the impact of gravity torque on a robotic shoulder joint's position control system driven by a DC motor. The torque generated by the motor is affected by the arm's position, specifically when fully extended, leading to a downward force that creates a moment. The torque expression involves a non-linear component, which must be linearized for effective system analysis. The author has found a way to represent the gravitational disturbance in their transfer function, addressing initial concerns about its impact on system performance. Overall, the logic of the approach is deemed sound for analyzing the system in the s-domain.
remz
Messages
9
Reaction score
0
I'm working on a developing a position control system for a robotic shoulder joint driven by a DC motor. To simplify, the robot arm can be viewed as being in a fully extended state.

I have now reached a stage where I can no longer ignore the affect gravity has on the torque generated by the motor.

The robot arm, in a fully extended position slighty above the horizontal, will experience a downwards force of F=mg sin(theta), where theta is measured from the vertical equilibrium point to the centre of gravity of the arm. As the arm is connected to a pivot, a moment is created with magnitude, T=mgr sin(theta), where r is the length of the arm measured from the pivot to the centre of gravity.

The presence of sin(theta) is non-linear and thus has to be linearised around an operating point. If we were to assume that the robot shoulder arm would not pivot at more than +-45deg from the horizontal axis, then, taking theta from the horizontal line, rather than from the vertical as we did previously, we can linearise the torque caused by gravity on the arm, as T = mgr cos(theta), where cos(theta) ~= 1 and so becomes, T = mgr.

The problem with this is that in developing the transfer function for my robot arm, that is (dw/dt) / i, where i is the current fed to the shoulder motor, the torque caused by gravity now appears as a disturbance. i.e., it is not a coefficent of either my input or output. Which is ideally what I would like.

Actually, I've just realized this isn't a problem as I have found a reasonable way to represent this disturbance in my block diagram and hence, my system transfer function. But, having spent all this time writing this I think i'll just post it all the same. Maybe you can criticize the logic of the above.

Rem
 
Last edited:
Engineering news on Phys.org
Heh, well, for what it's worth, except for not seeing why you care if it is a linear function or not, the logic looks fine.
 
The linearisation will be to analyse the system in the s-domain.
 
My idea is that I want to use immerse Whitetail Antlers in a fishtank to measure their volumetric displacement (the Boone and Crockett system is the current record measurement standard to place in a juxtaposition with) I would use some sight glass plumbed into the side of the tank to get the change in height so that I can multiply by the tank cross-section. Simple Idea. But... Is there a simple mechanical way to amplify the height in the sight glass to increase measurement precision...

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K