paradisePhysicist said:
If you push a block, on a vacuum on ice, it will continue to move based on Newton. But this only applies to solids, if you push a blob of water instead, the water will no longer behave as 1 blob of water but the water behind the water will be traveling faster than the front blobs of the water.
At the moment you initiate the interaction,, also in a solid the molecules closest to the point of application will be faster than those further away, after a transitory time, the electromagnetic repulsion forces in the material bonds will maintain the intensity the interaction in the whole mass. If you compare the dimensions of the previous material and during the interaction the dimensions change, it shortens if you push and it stretches if you pull, but the speed at the point of application is always higher than at the rest of the object.
paradisePhysicist said:
I think that is not the full story; while the gravity vector strengths are different in most cases, also the object is subject to stretching, or rather, compressive, forces due to that the directions of the different gravity vectors are at different angles. Example is a space station that matches the Earth's curve exactly:
Fmass
That is not totally true, for the body of the figure to remain in a stable orbit (circular, elliptical) the centripetal force is equal to the gravitational force, for any portion of mass. You are just neglecting the inertia, due to the change of direction of the velocity, only if you drop with zero velocity at the beginning you will see the approach of the extremes, and it is not due to the change of the module of the acceleration of gravity with the height, but to the change in the direction of the acceleration vector that always points to the center, no matter how dense or massive the object is.
If you rotate two objects of mass #m# joined by an inextensible string in a circular orbit, the string will not lose or gain tension due to the tidal force of the Earth's mass, only with the passage of time it will shorten due to the gravitational attraction of the masses #m# of the objects themselves.
MikeGomez said:
Clocks tick at a faster rate at the top of the accelerating rocket ship than at the bottom, identically to an equivalent situation on earth. The reason this has nothing to do with curved spacetime is due to the definition of curved spacetime, not the definition of acceleration or inertia.
The clocks will then tick faster in the head of a rocket than in the rear engines, while accelerating even in the absence of gravity, so in flat space the clocks are also modified, the variation of the measurement exists only if there is acceleration, regardless whether it is due to propulsion or due to the vertical way in which the ship is arranged in a gravitational field.
vanhees71 said:
I've no clue either. I think "inertia" is just a fundamental property of matter.
Although it is evident in matter, matter is not the only one that experiences inertia, inertia "I think" is related to the change in linear momentum, and photons also have it, solar sails, take advantage of the change in linear momentum of photons , to propel a ship.
A photon reflected in a mirror does not have to have the same energy as the original, if the mirror changes its momentum.
Photons also curve their trajectory under the curvature of space-time.