ueit said:
No, it's not. There are other interpretations (Bohm's one for example) free from the measurement problem.
Although, for non-relativistic QM, Bohmian mechanics is ontologically clearer, its "clearness" is sometimes overstated, because Bohmian mechanics needs TWO ontological parts:
- the particles, and that's what everybody stresses, and what looks like Newtonian mechanics with an added potential, so this seems at first sight to be very clear
- but there is ALSO, as an independent entity, the wavefunction, which does NOT live in spacetime, but which lives over configuration space all together. It is NOT a classical field, and it contains also all the "ghosts" of MWI.
You still have an interpretational problem, in the following sense: somehow, an "observer", although that observer has TWO ontological parts (its "particle" part, and its "wavefunction" part), can only be "aware" of its "particle part", and not of its "wavefunction" part, because if he were so, there wouldn't be any probabilistic part to it, and hence the predictions of BM wouldn't coincide with QM.
The other problem with BM of course is the fact that it is not compatible with a relativistic spacetime: there is no geometric formulation of BM possible (which would come down to being able to write BM in a lorentz-invariant way, which is not possible).
Anyway, for a double slit experiment even CI would give a much accurate prediction if a more detailed approach is used. For example it would be interesting to explain the change in momentum at the slits in terms of the interaction between the incoming electron and the field produced by the wall.
There is absolutely no difference between practical calculations in MWI and in CI, so both are just as accurate.
Before we discuss this further, there is something fundamental that escapes me in regards to MWI. QM is defined on a 4D spacetime background.
Not at all. QM is defined in hilbert space, which is the functional space over configuration space. This only coincides with "normal space" in the case of a single point particle.
Here the particles and fields exist, here we calculate the Hamiltonian and so on. What exactly is MWI's background? Do we have a 5D spacetime where the worlds are stacked in a certain way, or what? What is the geometry of this background? It is probably a silly question, but I couldn't find a good answer yet.
There are a lot of misunderstandings about MWI. MWI is simply defined, as in "normal" QM, over Hilbert space. This Hilbert space has a basis which can be "indexed" using a configuration space of a classical system, and that classical system can be a field over spacetime, or a set of particles in Euclidean space, or... whatever.
A given "observer" in MWI corresponds to certain subspaces of Hilbert space which correspond to a certain "history of observations" (just like a given observer state in classical phase space corresponds to certain patches in phase space corresponding to a certain "record of observation"). Now, in classical phase space, we usually consider only ONE point which is wandering around (the "state of the universe") in phase space, following a Hamiltonian flow. This point will enter and leave certain "observer patches" and this will correspond to "experienced observations". Given that these patches, classically, are disjoint (you do not have a patch that corresponds at the same time to "the light bulb was on" and "the light bulb was off"), there is no ambiguity to any observation.
In Hilbert space, the patches of "states of observers" are subspaces of hilbert space. And the "state of the universe" is a vector in Hilbert space that follows the unitary evolution of the Hamiltonian flow. However, the difference is now that this state of the universe can have components in DIFFERENT observer subspaces at the same time.
In MWI, we simply say that these different and incompatible observations are then taking place in different "worlds", and that you, as an observer, are just experiencing one of these subspaces and not all of them, simply because we can only experience one subspace. The other subspaces then correspond to experiences of "copies". What matters, for a specific subjective observer, is, what is the probability that he will be one of the copies. It is the specific structure of the subspaces which makes us have the illusion of a "theatre that is like spacetime".
You could compare this situation with a classical phase space where there are different points corresponding to different "worlds" wandering around on the Hamiltonian flow. These different points can then be in different "observer patches" at the same time, but you will only experience "one of these patches".
There is no need to assume that every possibility has to exist. Just because a brain has a number of possible states id doesn't follow that it has to exist in all those states simultaneously.
This is not postulated a priori. It is because it follows naturally out of the Schroedinger evolution equation that this consideration is taken. The reason for postulating "many worlds" is not a crazy idea that is imported, it is because it follows from the formalism. One has introduced a specific EXTRA mechanism in quantum theory to GET RID OF IT, which is projection, but that extra mechanism is the core of all difficulties in QM: it is explicitly non-local and not Lorentz-invariant, irreversible, dynamically ill-defined (when exactly does it happen) etc... It is because of all these difficulties *introduced by the patch that is projection* that Everett first considered to get rid of it, and to keep the one and only dynamical law that is well-defined in QM: hamiltonian unitary evolution. But IF you keep that as a universal dynamics, well then you end up *naturally* with a state of the universe where observers occur in superpositions of "macroscopically different observations". It is just because of this natural appearance of different classical observation states in the "state of the universe" that the idea was then to see this as "parallel worlds". There's no more or no less to it. MWI is simply: let us take the unitary dynamics of quantum theory as fundamental and universal, without introducing a patch to make it fit "classical outcomes" which introduces a lot of difficulties.
So MWI is nothing else but: let us take the hilbert space formalism of QM, and its unitary dynamics, for real, and see what it tells, without wanting to force any specific a-priori of what "should" reasonably, come out.