ballzac
- 100
- 0
Homework Statement
A cylinder rotates uniformly about the x' axis in S'. Show that in S, where it not only rotates but also travels forward, the twist per unit length is \gamma\omega v/ c^2, where \omega is the angular speed of the cylinder in S'.
Homework Equations
t'=\gamma (t-vx/c^2)
\theta '=\omega t'
The Attempt at a Solution
Well, I actually got the required result, but I'm a little concerned that my derivation might be incorrect because it seems to indicate something that seems wrong.
I used the equations above to get
\theta =\omega \gamma (t-vx/c^2)
now, I have made the assumption that \theta=\theta'which makes sense to me because the cylinder is rotating IN S', and S' itself is not actually rotating with respect to S.
differentiating the with respect to x gives the twist per unit length \gamma\omega v/ c^2
All seems fine so far. Then I thought it would be interesting to differentiate with respect to time. This gives the angular frequency according to S as \gamma \omega
My problem with this is that it seems to contradict time-dilation. It seems to indicate that S will see the cylinder rotating FASTER than S' will. This can't be right though, because time dilation should cause it to rotate slower in S than in S'. I'm sure the resolution of this is quite simple, but I haven't been able to spot where I'm going wrong. Any help appreciated :)
Last edited: