Wox said:
I'm trying to understand how one derives the relativistic treatment of the electromagnetic interaction from the classical one and which are the extra postulates made. We can start from Maxwell's equations and the Lorentz force. From the Galilean invariance of Newton's second law of motion F=\frac{dp}{dt}=q(E+v\times B) one can derive
(ref) how electric and magnetic field change when transforming to another inertial frame of reference. From this we realize
(same ref) that Maxwell's equations don't have the same form in all inertial frames. Therefore the Lorentz force is now Galilean invariant, meaning that it must be described in another space (where inertial frames of reference transform in a different way). But how do we proceed and end up with the relativistic treatment? Let's say we take the Minkowskian geometry of space-time as postulated. Do we need any more postulates to end up at F=\frac{dp_{rel}}{dt}=q(E+v\times B) where p_{rel}=m\frac{dx}{d\tau}=m\gamma v the relativistic momentum instead of the classical p=m\frac{dx}{dt}=mv?
Additionally, can we derive Lorentz invariance of the Maxwell equations from F=\frac{dp_{rel}}{dt}=q(E+v\times B) in the same way as we
(same ref) tried showing their Galilean invariance? I'm not sure how to handle the effect of 4D Lorentz transformations on 3D vector fields.
There is a book by H. A. Lorentz entitles "The Theory of Electrons." It does what you are asking about. Lorentz derives the "Lorentz transform" using "classical physics". However, he had to make ad hoc assumptions as to the nonelectromagnetic forces that hold and electron together. He made some assumptions about a so called ether wind. However, this book is closer to anything else I read as to "explaining" special relativity.
Lorentz takes into account the stresses on an extended charged body caused by the interaction between different parts of the charged body and the electromagnetic field. Lorentz also takes into account the delay in the electromagnetic interaction caused by the speed of light. The self interaction of the body that is moving at constant velocity relative to the ether is what causes the foreshortening of length and the dilation of time. The dilation in time causes the increase in mass.
There is one important point about the Lorentz theory that hasn't been discussed very well. This is that the Lorentz theory is not strictly Newtonian.
Newton's third law postulates that if a first body applies a force to second body, the second body immediately applies a force to the first body that is equal in magnitude but opposite in direction to the force on the second body. Thus, every action has an immediate reaction.
Lorentz postulates that there is a time delay between the action and the reaction of an electromagnetic force that is proportional to the distance between the two bodies. Thus, internal forces of a charged body don't completely cancel out. If the charged body is very big, the electromagnetic force generated inside the charged body will greatly effect its movement and its shape.
Lorentz derived an "effective time" and an "effect position" that was derived from the "actual time" and "actual position". However, he didn't realize that these effective quantities were every bit as real as the actual quantities. He himself said that he didn't realize that the effective quantities can be measured!
Hence the Lorentz derivations are not 100% Newtonian. Newton's Third Law of Motion is written in present tense. Newton described his law of gravity as action at a distance. There is no such thing as a force field with a delay in Principia. According to Lorentz, there is always a delay at least with respect to the electromagnetic forces. Although not Newtonian, relativity is still referred to as part of "classical" physics.
Lorentz did not realize that he had discovered a symmetry principle. Einstein extracted a symmetry principle which is more general than the dynamics described by Lorentz. Einstein's special relativity applies to all forces, both electromagnetic and nonelectromagnetic.
Einstein's symmetry principle even applies to quantum mechanical systems. Lorentz's theory is strictly classical. It requires the electromagnetic field to be continuous and the particles to be discrete although extended. So one can't analyze quantum systems using the Lorentz theory. Thus, Einstein's theory is more general than the Lorentz theory of the electron. Symmetry principles in general tend to be more robust then the detailed dynamics they are derived from. However, that is a topic that deserves a separate discussion.
"The Theory of Electrons" is a great book. The mathematics of Lorentz are far harder then the mathematics of Einstein, but are satisfying in their own way. I couldn't find any edition of this book still being published. I had to buy an expensive used copy of "Theory of Electrons." Still, the book was worth it.