BobbyBear
- 162
- 1
Consider the IVP:
<br /> \left. \begin{array}{l}<br /> \frac {dy} {dx} = f(x,y) \\<br /> y( x_{0} ) = y_{0}<br /> \end{array} \right\} \mbox{ze IVP :p}<br />
Hypothesis:
f(x,y)\subset C^\infty_{x,y}(D)\; \; / \; \;(x_0,y_0)\in D
[Note that this condition automatically satisfies the hypotheses of the Existence and Uniqueness Theorem (ie, f \in C_{x,y}(D) and f \in L_y(D) (L=Lipschitzian)), hence we know that a unique solution to the IVP does indeed exist at least in a certain interval centred around x_0, \; x \in |x-x_0| \leq h].
So then, let y(x) be the solution to the IVP (at least in that interval x \in |x-x_0| \leq h). Then we know that in that interval the ode is satisfied, and so,
\frac {dy} {dx} = f(x,y) \; \; \rightarrow \; \; y'(x_0)=f(x_0,y(x_0))=f(x_0,y_0)
\frac {d^2y} {dx^2} = \frac {d} {dx} f(x,y)= \frac {\partial f} {\partial x} \frac {dx} {dx} \; + \; \frac {\partial f} {\partial y} \frac {dy} {dx} \\ <br /> \indent \rightarrow \; \; y''(x_0)= \frac {\partial f} {\partial x}|_{(x_0,y(x_0))} \; + \; \frac {\partial f} {\partial y}|_{(x_0,y(x_0))}\cdot f(x_0,y_0)
\frac {d^3y} {dx^3} = \frac {d} {dx} (\frac {d^2y} {dx^2}) = \frac {\partial ^2f} {\partial x^2} \frac {dx} {dx} \; + \; \frac {\partial ^2f} {\partial y^2} \frac {dy} {dx} \; + \; \frac {\partial^2 f} {\partial x \partial y } \frac {dy} {dx} \; + \; \frac {\partial ^2f} {\partial y^2}(\frac {dy} {dx})^2 \; + \; \frac {\partial f} {\partial y} \frac {d^2y} {dx^2}\\ = \frac {\partial ^2f} {\partial x^2} \; + \; f\cdot \frac {\partial ^2f} {\partial y^2} \; + \; \frac {\partial f} {\partial y} (\frac {\partial f} {\partial x} \; + \; f\cdot \frac {\partial f} {\partial y}) \; + \; f\cdot \frac {\partial^2 f} {\partial x \partial y } \; + \; f^2 \frac {\partial ^2f} {\partial y^2} \\ \;<br /> \indent \rightarrow \; \; get y'''(x_0) -wipes brow-
[Note that for the derivatives of y to exist we need the derivatives of all orders of f to exist, at least in the small region around (x_0, y_0), which justifies the hypothesis of the method].
So! We can then construct the Taylor series:
y(x_0)+y'(x_0)\cdot (x-x_0) + y''(x_0)\cdot \frac {(x-x_0)^2}{2!} + . . .
BUT!
1) How do you know that the Taylor series converges around x0 ? (Do all Taylor series converge in some interval around x0? :P )
2) Okay so assuming the Taylor series converges in some interval around x0, how do we know that it is equal to the function y(x) solution of the IVP? That y(x) \in C^\infty _x does NOT mean that y(x) is analytic! :>
PALEEZE HELP! 0:
<br /> \left. \begin{array}{l}<br /> \frac {dy} {dx} = f(x,y) \\<br /> y( x_{0} ) = y_{0}<br /> \end{array} \right\} \mbox{ze IVP :p}<br />
Hypothesis:
f(x,y)\subset C^\infty_{x,y}(D)\; \; / \; \;(x_0,y_0)\in D
[Note that this condition automatically satisfies the hypotheses of the Existence and Uniqueness Theorem (ie, f \in C_{x,y}(D) and f \in L_y(D) (L=Lipschitzian)), hence we know that a unique solution to the IVP does indeed exist at least in a certain interval centred around x_0, \; x \in |x-x_0| \leq h].
So then, let y(x) be the solution to the IVP (at least in that interval x \in |x-x_0| \leq h). Then we know that in that interval the ode is satisfied, and so,
\frac {dy} {dx} = f(x,y) \; \; \rightarrow \; \; y'(x_0)=f(x_0,y(x_0))=f(x_0,y_0)
\frac {d^2y} {dx^2} = \frac {d} {dx} f(x,y)= \frac {\partial f} {\partial x} \frac {dx} {dx} \; + \; \frac {\partial f} {\partial y} \frac {dy} {dx} \\ <br /> \indent \rightarrow \; \; y''(x_0)= \frac {\partial f} {\partial x}|_{(x_0,y(x_0))} \; + \; \frac {\partial f} {\partial y}|_{(x_0,y(x_0))}\cdot f(x_0,y_0)
\frac {d^3y} {dx^3} = \frac {d} {dx} (\frac {d^2y} {dx^2}) = \frac {\partial ^2f} {\partial x^2} \frac {dx} {dx} \; + \; \frac {\partial ^2f} {\partial y^2} \frac {dy} {dx} \; + \; \frac {\partial^2 f} {\partial x \partial y } \frac {dy} {dx} \; + \; \frac {\partial ^2f} {\partial y^2}(\frac {dy} {dx})^2 \; + \; \frac {\partial f} {\partial y} \frac {d^2y} {dx^2}\\ = \frac {\partial ^2f} {\partial x^2} \; + \; f\cdot \frac {\partial ^2f} {\partial y^2} \; + \; \frac {\partial f} {\partial y} (\frac {\partial f} {\partial x} \; + \; f\cdot \frac {\partial f} {\partial y}) \; + \; f\cdot \frac {\partial^2 f} {\partial x \partial y } \; + \; f^2 \frac {\partial ^2f} {\partial y^2} \\ \;<br /> \indent \rightarrow \; \; get y'''(x_0) -wipes brow-
[Note that for the derivatives of y to exist we need the derivatives of all orders of f to exist, at least in the small region around (x_0, y_0), which justifies the hypothesis of the method].
So! We can then construct the Taylor series:
y(x_0)+y'(x_0)\cdot (x-x_0) + y''(x_0)\cdot \frac {(x-x_0)^2}{2!} + . . .
BUT!
1) How do you know that the Taylor series converges around x0 ? (Do all Taylor series converge in some interval around x0? :P )
2) Okay so assuming the Taylor series converges in some interval around x0, how do we know that it is equal to the function y(x) solution of the IVP? That y(x) \in C^\infty _x does NOT mean that y(x) is analytic! :>
PALEEZE HELP! 0: