Another1
- 39
- 0
Bessel function
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$
to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
___________________________________________________________________________________________
my solution
$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$
$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
this is wrong
____________________________________________________________________________________________
please help me to solve this soluion
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$
to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
___________________________________________________________________________________________
my solution
$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$
$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
this is wrong
____________________________________________________________________________________________
please help me to solve this soluion
Last edited: