MHB How does the Bessel Function Expansion relate to J_{0}(u+v)?

AI Thread Summary
The discussion focuses on deriving the relationship between the Bessel function expansion and the expression for J_{0}(u+v). The key equation used is g(x,t) = g(u+v,t) = g(u,t)g(v,t), leading to the conclusion that J_{0}(u+v) can be expressed as a product of J_{0}(u) and J_{0}(v) plus a summation term involving J_{s}(u) and J_{-s}(v). The derivation involves manipulating exponential forms and summations of Bessel functions. The final result confirms that J_{0}(u+v) = J_{0}(u)J_{0}(v) + 2∑_{s=1}^{∞}J_{s}(u)J_{-s}(v). The discussion concludes with a successful resolution of the problem.
Another1
Messages
39
Reaction score
0
Bessel function

using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion
 
Last edited:
Mathematics news on Phys.org
Another said:
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion

now i can solve it thankkkk !

$$g(u+v,t)=g(u,t)g(v,t)$$

$$e^{\frac{u+v}{2}(t-\frac{1}{t})}=e^{\frac{u}{2}(t-\frac{1}{t})}e^{\frac{v}{2}(t-\frac{1}{t})}$$

$$\sum_{n=-\infty}^{\infty}J_{n}(u+v)t^n=\sum_{l=-\infty}^{\infty}J_{l}(u)t^l\sum_{m=-\infty}^{\infty}J_{m}(v)t^m$$

let n = 0
$$J_{0}(u+v)= \left(...+J_{-1}(u)t^{-1}+J_{0}(u)+J_{1}(u)t^1+...\right)\left(...+J_{-1}(v)t^{-1}+J_{0}(v)+J_{1}(v)t^1+...\right)$$

but $$J_{-n}(u)=(-1)^{n}J_{n}(u)$$
so...
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2J_{1}(u)J_{-1}(v)+2J_{2}(u)J_{2}(v)+...$$
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
 
Funions!
 
Joppy said:
Funions!

oh sorry I mean function n and c missing from word
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top