How does the Bessel Function Expansion relate to J_{0}(u+v)?

Click For Summary
SUMMARY

The discussion focuses on the Bessel function expansion, specifically the relationship expressed as $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$. The participants utilize the generating function $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$ to derive this relationship. A key step involves recognizing that $$J_{-n}(u)=(-1)^{n}J_{n}(u)$$, which leads to the correct formulation of the Bessel function expansion.

PREREQUISITES
  • Understanding of Bessel functions, specifically $$J_{n}(u)$$ and $$J_{0}(u)$$.
  • Familiarity with generating functions in mathematical analysis.
  • Knowledge of series expansions and convergence criteria.
  • Basic proficiency in mathematical notation and manipulation of infinite series.
NEXT STEPS
  • Study the properties and applications of Bessel functions in mathematical physics.
  • Learn about generating functions and their role in combinatorial mathematics.
  • Explore the derivation of other Bessel function identities and their proofs.
  • Investigate the convergence of series expansions related to special functions.
USEFUL FOR

Mathematicians, physicists, and engineers who are working with Bessel functions, particularly in fields such as wave propagation, heat conduction, and signal processing.

Another1
Messages
39
Reaction score
0
Bessel function

using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion
 
Last edited:
Physics news on Phys.org
Another said:
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion

now i can solve it thankkkk !

$$g(u+v,t)=g(u,t)g(v,t)$$

$$e^{\frac{u+v}{2}(t-\frac{1}{t})}=e^{\frac{u}{2}(t-\frac{1}{t})}e^{\frac{v}{2}(t-\frac{1}{t})}$$

$$\sum_{n=-\infty}^{\infty}J_{n}(u+v)t^n=\sum_{l=-\infty}^{\infty}J_{l}(u)t^l\sum_{m=-\infty}^{\infty}J_{m}(v)t^m$$

let n = 0
$$J_{0}(u+v)= \left(...+J_{-1}(u)t^{-1}+J_{0}(u)+J_{1}(u)t^1+...\right)\left(...+J_{-1}(v)t^{-1}+J_{0}(v)+J_{1}(v)t^1+...\right)$$

but $$J_{-n}(u)=(-1)^{n}J_{n}(u)$$
so...
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2J_{1}(u)J_{-1}(v)+2J_{2}(u)J_{2}(v)+...$$
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
 
Funions!
 
Joppy said:
Funions!

oh sorry I mean function n and c missing from word
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
952
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
527
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
3K