How Does Trig Substitution Simplify the Integral of 1/(25-t^2)^(3/2)?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Inverse
Click For Summary
SUMMARY

The integral of \( \frac{1}{(25-t^2)^{3/2}} \) can be simplified using trigonometric substitution. By substituting \( t = 5\sin(u) \), the integral transforms into \( \frac{1}{25}\int \sec^2(u)\,du \), which evaluates to \( \frac{1}{25}\tan(u) + C \). The final result is expressed as \( \frac{t}{25\sqrt{25-t^2}} + C \), confirming the effectiveness of trigonometric substitution in simplifying complex integrals.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in integration
  • Basic proficiency in handling inverse trigonometric functions
NEXT STEPS
  • Study advanced techniques in trigonometric substitution
  • Explore integration techniques involving hyperbolic functions
  • Learn about the applications of integrals in physics and engineering
  • Review the properties of secant and tangent functions in calculus
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as professionals applying integral calculus in fields such as physics and engineering.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w,8.7.8 nmh{925}
$\displaystyle\int\frac{1}{\left(25-{t}^{2 }\right)^{3 /2 } }\ dt
=\frac{t}{25\sqrt{25-{t}^{2 }}}+C$

$\begin{align}\displaystyle
t& = {5\sin\left({u}\right)} &
dt&={5\cos\left({u}\right)} du&
\end{align}$

Then $ \displaystyle\int\dfrac{5\cos\left({u}\right)}
{\left(25-25\sin^2 \left({u}\right)\right)^{3 /2} }\ du$
?
Couldn't see the magic massage thing to avoid a trig substitution
 
Last edited:
Physics news on Phys.org
I think a trig. substitution is a good strategy here...you should be able to now simplify to get:

$$I=\frac{1}{25}\int \sec^2(u)\,du$$

Can you proceed?
 
Not sure but.

$$I=\frac{1}{25}\int \sec^2(u)\,du
=\frac{1}{25}\tan\left({u}\right)+C$$
Since
$\displaystyle
t=5\sin\left({u}\right)$
Then
$\displaystyle
u=\arcsin\left(\frac{t}{5}\right) $
So
$\displaystyle
I=\frac{t}{25\sqrt{25-{t}^{2}}}+C$
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
ssct.png
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K