MHB How Does Trigonometric Substitution Simplify the Integral Calculation?

Click For Summary
Trigonometric substitution simplifies the integral calculation by transforming the variable of integration, making it easier to evaluate definite integrals. In this case, the substitution \( x = 12\sin(\theta) \) leads to a simpler integral that evaluates to \( \frac{\pi}{2} \) over the new limits from \( 0 \) to \( \frac{\pi}{2} \). The original integral, expressed in terms of \( x \), is corrected to reflect the proper limits, resulting in \( I_{49} = \arcsin\left(\frac{b}{12}\right) - \arcsin\left(\frac{a}{12}\right) \). This method effectively reduces the complexity of the integral by utilizing trigonometric identities. Overall, trigonometric substitution is a powerful technique for simplifying integral calculations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.8.49
$a=0 \ \ b=12$
$\displaystyle I_{49}=\int_{a}^{b} \frac{dx}{\sqrt[]{144-x^2}} \, dx = \arcsin{\left[\frac{1}{12}\right]} \\$
$ \text{use identity} $
$\sin^2\theta+\cos^2\theta = 1
\Rightarrow 1-\cos^2\theta=\sin^2\theta
\\$
$\text{x substituion} $
$\displaystyle
x=12\sin{\theta}
\therefore dx=12\cos{\theta}
\therefore \theta=\arcsin\left[\frac{x}{12}\right]
\\$
$\displaystyle I_{49}=\int_{a}^{b} \frac{12\cos {\theta}}{\sqrt[]{144-144cos^2\theta}} \, d\theta
= \int_{a}^{b} \frac{\cos\theta}{\cos{\theta} }\, d\theta =
\int_{a}^{b} 1 \,d\theta = \left[\theta\right]_a^b
\\ $
$\text{back substitute } \\
\displaystyle
a=0 \ \ b=12 \ \ \theta=\arcsin\left[\frac{x}{12}\right]$
$\arcsin\left[\frac{12}{12}\right]
-\arcsin\left[\frac{0}{12}\right]=\frac{\pi}{2}$
 
Last edited:
Physics news on Phys.org
Here's how I'd work this problem:

$$I=\int_{0}^{12}\frac{1}{\sqrt{12^2-x^2}}\,dx$$

Let:

$$x=12\sin(\theta)\implies dx=12\cos(\theta)\,d\theta$$

$$I=\int_{0}^{\frac{\pi}{2}}\,d\theta=\frac{\pi}{2}$$
 
Ok, after drying my years
Why would the domain be $0$ to $\frac{\pi}{2}$ ?
 
karush said:
Ok, after drying my years
Why would the domain be $0$ to $\frac{\pi}{2}$ ?

Originally, the limits were in terms of $x$, but with the substitution were using, we need them to be in terms of $\theta$. So we use:

$$\theta(x)=\arcsin\left(\frac{x}{12}\right)$$

So, we find the new limits to be:

$$\theta(0)=\arcsin\left(\frac{0}{12}\right)=0$$

$$\theta(12)=\arcsin\left(\frac{12}{12}\right)=\frac{\pi}{2}$$
 
Ok got it:cool:
 
The only real issue I would find with what you originally posted is this line:

$$I_{49}=\int_{a}^{b} \frac{dx}{\sqrt{144-x^2}}\,dx=\arcsin\left(\frac{1}{12}\right)$$

You have two differentials in the integral, and the result should be:

$$I_{49}=\int_{a}^{b} \frac{1}{\sqrt{144-x^2}}\,dx=\arcsin\left(\frac{b}{12}\right)-\arcsin\left(\frac{a}{12}\right)$$
 

Similar threads