I've seen some numbers, but I can't remember the text/source.
The lighter fission products, e.g., isotopes of Br, Kr, Rb, Sr, Y, Zr . . . have higher energy and travel about 7-10 microns in UO2. The lighter the isotope, the higher the energy. The heavier fission products, e.g., isotopes of Sb, Te, I, Xe, Cs, La, . . . . travel about 4-6 microns in UO2. Two fission products may share between 160 and 170 MeV, and one might be 65 MeV (the heavier one) and the the other about 105 MeV, for example. The rest of the energy is carried away by neutrons and gammas, and internal to the fission products, which decay by beta decay. Neutrinos, or rather, antineutrinos carry away some energy as well, in conjunction with beta decay.
The text, Introduction to Nuclear Engineering, 3rd Edition, by John Lamarsh and Anthony J. Baratta, Prentice Hall, 2001, p. 108 shows ranges of fission products to be 6.6 microns in U and 14 microns in U3O8, so probably about 10 microns in UO2. Of course, this depends on porosity of the ceramic, which could increase the range, since the pores have little stopping power, even filled with gas.
.