MHB How have I dropped a factor 2 on the square root of 19?

Click For Summary
The discussion centers on a mathematical problem involving the equation derived from a geometric context. The equation simplifies to \(30 = 3x^2 - 18x\), leading to the completion of the square method. The solution yields \(x = 3 \pm \sqrt{19}\). A participant expresses confusion about a supposed missing factor of two on the square root of 19, but another clarifies that no factor was actually dropped. The resolution emphasizes that the calculations are correct as presented.
mathlearn
Messages
331
Reaction score
0
The main problem is http://mathhelpboards.com/pre-algebra-algebra-2/find-length-dc-19355.html#post88492

In this question

$15 = \dfrac{\left((x+3)+(2x-3)\right)h}{2}=\frac12 ((x+3)+(2x-3))\times((2x-3) -(x+3))=\frac12((2x-3)^2-(x+3)^2)=\frac12(3 x^2-18 x)$

So we get $30=3x^2-18x$

Now using the complete the square method

$x^2-6x=10$
$x^2-6x+9=19$
$x=3\pm\sqrt {19}$

This is what I get , I know that i Have missed a factor of two on the square root of 19, How and why was that dropped?

:)
 
Mathematics news on Phys.org
mathlearn said:
I know that i Have missed a factor of two on the square root of 19
You have not.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 68 ·
3
Replies
68
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K