MHB How is the Integral Form of Momentum Conservation Derived in Fluid Dynamics?

Click For Summary
SUMMARY

The integral form of momentum conservation in fluid dynamics is derived from the balance of forces acting on a volume of fluid, denoted as \(W\). The total force is expressed as \(\overrightarrow{S}_{\partial{W}} + \overrightarrow{B}_{W} = \int_{W}(\rho \overrightarrow{b} - \nabla p)dV\). By applying the second law of Newton and the material derivative, the relationship \(\int_{W}\rho \frac{D\overrightarrow{u}}{Dt}dV = \overrightarrow{S}_{\partial{W}} + \overrightarrow{B}_{W}\) is established. The differential form of momentum conservation is given by \(\rho \frac{D\overrightarrow{u}}{Dt} = -\nabla p + \rho \overrightarrow{b}\).

PREREQUISITES
  • Understanding of fluid dynamics principles
  • Familiarity with vector calculus
  • Knowledge of Newton's laws of motion
  • Concept of material derivatives in fluid mechanics
NEXT STEPS
  • Study the derivation of the Navier-Stokes equations
  • Learn about the application of the product rule in fluid dynamics
  • Explore the implications of the conservation of mass in fluid flow
  • Investigate numerical methods for solving fluid dynamics equations
USEFUL FOR

Students and professionals in fluid dynamics, physicists, and engineers focusing on momentum conservation and its applications in various fluid systems.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the conservation of momentum.

The force at $W$ from the tensions at the boundary $\partial{W}$ is $$\overrightarrow{S}_{\partial{W}}=-\int_{\partial{W}}p \cdot \overrightarrow{n}dA=-\int_{W}\nabla p dV$$ where $p(\overrightarrow{x}, t)$ the pressure and $\overrightarrow{n}$ the unit perpendicular vector.

The massive forces is $$\overrightarrow{B}_{W}=\int_{W}\rho \overrightarrow{b}dV$$ where $\overrightarrow{b}$ the density of massive forces.

So, the total force on the fluids in the volum $W$ is $$\overrightarrow{S}_{\partial{W}}+\overrightarrow{B}_{W}=\int_{W}( \rho \overrightarrow{b}-\nabla p)dV$$

From the second Newton's law we have that $\overrightarrow{F}=m\cdot \overrightarrow{a}$ and since $m=\int \rho dV$ and $\overrightarrow{a}=\frac{D\overrightarrow{u}}{Dt}$, where $\frac{D}{Dt}$ the material derivative, we have the following:

$$\int_{W}\rho \frac{D\overrightarrow{u}}{Dt}dV=\overrightarrow{S}_{\partial{W}}+\overrightarrow{B}_{W}=\int_{W}(\rho \overrightarrow{b}-\nabla p)dV$$

The differential form of the conservation of momentum is $$\rho \frac{D\overrightarrow{u}}{Dt}=-\nabla p+\rho\overrightarrow{b}$$

We are looking for the integral form of the conservation of momentum.

We have $$\rho \frac{\partial{\overrightarrow{u}}}{\partial{t}}=-\rho (\overrightarrow{u}\cdot \nabla )\overrightarrow{u}-\nabla p+\rho \overrightarrow{b}$$

From the differential form of the conservation of mass ($\frac{\partial{\rho}}{\partial{t}}+\nabla \cdot (\rho \overrightarrow{u})=0$) we get the following:

$$\frac{\partial}{\partial{t}}(\rho \overrightarrow{u})=-div(\rho \overrightarrow{u})\overrightarrow{u}-\rho(\overrightarrow{u}\nabla)\overrightarrow{u}-\nabla p+\rho\overrightarrow{b}$$

Could you explain to me how we get the last relation?? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
We have $$\rho \frac{\partial{\overrightarrow{u}}}{\partial{t}}=-\rho (\overrightarrow{u}\cdot \nabla )\overrightarrow{u}-\nabla p+\rho \overrightarrow{b}$$

From the differential form of the conservation of mass ($\frac{\partial{\rho}}{\partial{t}}+\nabla \cdot (\rho \overrightarrow{u})=0$) we get the following:

$$\frac{\partial}{\partial{t}}(\rho \overrightarrow{u})=-div(\rho \overrightarrow{u})\overrightarrow{u}-\rho(\overrightarrow{u}\nabla)\overrightarrow{u}-\nabla p+\rho\overrightarrow{b}$$

Could you explain to me how we get the last relation?? (Wondering)

Hey! (Blush)

According to the product rule, we have:
$$\pd {} t(\rho \overrightarrow u) = \pd \rho t\overrightarrow u + \rho \pd {\overrightarrow u} t
$$
Now substitute the conservation of mass. (Wasntme)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
2
Views
2K
Replies
5
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K