MHB How is the Integral Form of Momentum Conservation Derived in Fluid Dynamics?

AI Thread Summary
The discussion focuses on deriving the integral form of momentum conservation in fluid dynamics. It begins with the expression for the total force on a fluid volume, combining pressure and body forces. The relationship between mass, acceleration, and forces is established using Newton's second law, leading to the differential form of momentum conservation. The conversation then shifts to how the integral form can be derived from the conservation of mass, specifically using the product rule for differentiation. The final expression connects the time derivative of momentum density to the forces acting on the fluid.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the conservation of momentum.

The force at $W$ from the tensions at the boundary $\partial{W}$ is $$\overrightarrow{S}_{\partial{W}}=-\int_{\partial{W}}p \cdot \overrightarrow{n}dA=-\int_{W}\nabla p dV$$ where $p(\overrightarrow{x}, t)$ the pressure and $\overrightarrow{n}$ the unit perpendicular vector.

The massive forces is $$\overrightarrow{B}_{W}=\int_{W}\rho \overrightarrow{b}dV$$ where $\overrightarrow{b}$ the density of massive forces.

So, the total force on the fluids in the volum $W$ is $$\overrightarrow{S}_{\partial{W}}+\overrightarrow{B}_{W}=\int_{W}( \rho \overrightarrow{b}-\nabla p)dV$$

From the second Newton's law we have that $\overrightarrow{F}=m\cdot \overrightarrow{a}$ and since $m=\int \rho dV$ and $\overrightarrow{a}=\frac{D\overrightarrow{u}}{Dt}$, where $\frac{D}{Dt}$ the material derivative, we have the following:

$$\int_{W}\rho \frac{D\overrightarrow{u}}{Dt}dV=\overrightarrow{S}_{\partial{W}}+\overrightarrow{B}_{W}=\int_{W}(\rho \overrightarrow{b}-\nabla p)dV$$

The differential form of the conservation of momentum is $$\rho \frac{D\overrightarrow{u}}{Dt}=-\nabla p+\rho\overrightarrow{b}$$

We are looking for the integral form of the conservation of momentum.

We have $$\rho \frac{\partial{\overrightarrow{u}}}{\partial{t}}=-\rho (\overrightarrow{u}\cdot \nabla )\overrightarrow{u}-\nabla p+\rho \overrightarrow{b}$$

From the differential form of the conservation of mass ($\frac{\partial{\rho}}{\partial{t}}+\nabla \cdot (\rho \overrightarrow{u})=0$) we get the following:

$$\frac{\partial}{\partial{t}}(\rho \overrightarrow{u})=-div(\rho \overrightarrow{u})\overrightarrow{u}-\rho(\overrightarrow{u}\nabla)\overrightarrow{u}-\nabla p+\rho\overrightarrow{b}$$

Could you explain to me how we get the last relation?? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
We have $$\rho \frac{\partial{\overrightarrow{u}}}{\partial{t}}=-\rho (\overrightarrow{u}\cdot \nabla )\overrightarrow{u}-\nabla p+\rho \overrightarrow{b}$$

From the differential form of the conservation of mass ($\frac{\partial{\rho}}{\partial{t}}+\nabla \cdot (\rho \overrightarrow{u})=0$) we get the following:

$$\frac{\partial}{\partial{t}}(\rho \overrightarrow{u})=-div(\rho \overrightarrow{u})\overrightarrow{u}-\rho(\overrightarrow{u}\nabla)\overrightarrow{u}-\nabla p+\rho\overrightarrow{b}$$

Could you explain to me how we get the last relation?? (Wondering)

Hey! (Blush)

According to the product rule, we have:
$$\pd {} t(\rho \overrightarrow u) = \pd \rho t\overrightarrow u + \rho \pd {\overrightarrow u} t
$$
Now substitute the conservation of mass. (Wasntme)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top