Different forms of Bernoulli's equation

Click For Summary
SUMMARY

The discussion centers on a specific form of Bernoulli's equation used in medical applications, particularly for blood flow in the aorta. The equation includes terms for flow acceleration and viscous friction, represented as $$P_{1} - P_{2}= 1/2 \rho (v_{2}^{2}- v_{1}^{2}) + \rho \int_{1}^{2} \frac{\overrightarrow{dv}}{dt}\cdot \overrightarrow{ds} + R(\overrightarrow{v})$$. The second term accounts for unsteady flow conditions, while the last term addresses viscous drag, which can be significant in blood flow, especially in capillaries. Understanding this equation requires knowledge of energy conservation principles in fluid dynamics.

PREREQUISITES
  • Understanding of Bernoulli's equation and its standard form
  • Familiarity with fluid dynamics concepts, particularly unsteady flow
  • Knowledge of viscous flow principles in conduits
  • Basic grasp of energy conservation in fluid systems
NEXT STEPS
  • Research "unsteady state Bernoulli equation" for insights on time-varying fluid velocities
  • Explore "viscous flow in a pipe" to understand the impact of viscosity on fluid dynamics
  • Study the derivation of Bernoulli's equation from conservation of energy principles
  • Examine applications of Bernoulli's equation in medical contexts, particularly in hemodynamics
USEFUL FOR

Medical engineers, fluid dynamics researchers, and anyone involved in the study of blood flow mechanics will benefit from this discussion.

Jak243
Messages
1
Reaction score
0
I was reading some textbooks on doppler echo for medicine and came across this version of the bernoulli equation for blood flow in the aorta. $$P_{1} - P_{2}= 1/2 \rho (v{_{2}}^{2}- v{_{1}}^{2}) + \rho \int_{1}^{2} \frac{\overrightarrow{dv}}{dt}\cdot \overrightarrow{ds} + R(\overrightarrow{v})$$ They call the second term on the rhs the flow acceleration and the last term on the rhs is the viscous friction. Can someone help explain the origin of the flow acceleration term and also offer a derivation of this form of the bernoulli equation from conservation of energy. Most simple derivations of the bernoulli equation only yield the familiar C = 1/2 ρ v^2 + ρgh + p
 
Physics news on Phys.org
Jak243 said:
I was reading some textbooks on doppler echo for medicine and came across this version of the bernoulli equation for blood flow in the aorta. $$P_{1} - P_{2}= 1/2 \rho (v{_{2}}^{2}- v{_{1}}^{2}) + \rho \int_{1}^{2} \frac{\overrightarrow{dv}}{dt}\cdot \overrightarrow{ds} + R(\overrightarrow{v})$$ They call the second term on the rhs the flow acceleration and the last term on the rhs is the viscous friction. Can someone help explain the origin of the flow acceleration term and also offer a derivation of this form of the bernoulli equation from conservation of energy. Most simple derivations of the bernoulli equation only yield the familiar C = 1/2 ρ v^2 + ρgh + p
The simple version you wrote is for a steady state flow in which the fluid velocity at any location in the fluid is not changing as a function of time. In the first equation, the 2nd term on the rhs is a correction to allow for the velocity to be changing with time. Google "unsteady state Bernoulli equation." The third term corrects for viscous drag at the walls of the conduit. In blood flow applications, particularly capillaries, the term can dominate. Google "viscous flow in a pipe."
 
Have you looked into trying to derive this yourself at all? I mean, just from looking at the terms you ought to be able to get a sense of what it is trying to do. The Bernoulli equation is essentially an energy balance that usually deals with energy due to static pressure, kinetic energy (dynamic pressure), and sometimes gravity. Clearly this neglects gravity, but the second RHS term ought to look pretty familiar to you in terms of an energy balance, and the last term is basically a catchall term for viscous terms.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 18 ·
Replies
18
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K