How Is the Maximum Temperature of an Otto Cycle Engine Calculated?

  • Thread starter Thread starter gnarkil
  • Start date Start date
  • Tags Tags
    Cycle Otto
Click For Summary
The discussion focuses on calculating the maximum temperature of an Otto cycle engine in relation to its minimum temperature, T_min, using the relationship T_max = (5/12)T_min and incorporating the specific heat ratio, gamma. The participants analyze the efficiency of the Otto cycle compared to a Carnot engine, concluding that the efficiency of the Otto cycle is less than that of the Carnot engine operating between the same temperature limits. The equations used include the ideal gas law and the efficiency formula for the Otto cycle, with specific values for Cp and Cv provided. Participants express uncertainty about integrating gamma into their calculations for maximum temperature. The conversation emphasizes the importance of understanding thermodynamic principles in engine efficiency and temperature calculations.
gnarkil
Messages
26
Reaction score
0

Homework Statement



Gasoline engines operate approximately on the Otto cycle, consisting of two adiabatic and two constant-volume segments. The Otto cycle for a particular engine is shown in figure below. see atchmt

1. Find the maximum temperature in terms of the minimum temperature T_min. (gamma should be part of answer, where gamma = Cp/Cv -->Cp = 5R/2,Cv = 3R/2 --> R = 8.314

2. How does the efficiency compare with that of a Carnot engine operating between the same two temperature extremes? Note: Figure neglects the intake of fuel-air and the exhaust of combustion products, which together involve essentially no net work.

e_otto < e_carnot or e_otto = e_carnot or e_otto > e_carnot?

Homework Equations



ideal gas law, PV = nRT

otto cycle efficiency, e = 1 - (Cp/Cv)^-1 where Cp = 5R/2, Cv = 3R/2 where R = 8.314 constant

for otto cycle TV^(gamma -1) = constant where gamma = Cp/Cv

The Attempt at a Solution



for the problem about the temperature i used the TV^(gamma - 1) = constant equation and used T_min for T and thus used the figure to determine the corresponding volume

i used a rough calculation with PV = nRT to get a general idea of temp magnitude
pt3: P = 3P_2, V = V_1/5
pt4: P = 2P_2, V = V_1
pt1: P = P_2/2, V = V_1
pt2: P = P_2, V = V_1/5

and using T = PV/nR and subbing in each pressure and volume, and holding P_2, V_1, n and R = 1, i found pt4 = T = 2, pt3 = T = 3/5, pt2 = T = 1/5, pt1 = T = 1/2, so i assumed T_min is at pt2, and that T_max is at pt4.

how do i use the TV equation using T_min and gamma to describe T_max?
 

Attachments

  • otto.JPG
    otto.JPG
    4.5 KB · Views: 599
Physics news on Phys.org
no ideas?

i had another look and Tmax is at 3, and Tmin is at 1

using PV= nRT:
Tmax = PV/nR = [3P_2(V_1/5)]/nR assume n, R, P_2 and V_1 = 1
Tmin = PV/nR = [P_2/4(V_1)]/nR

so assuming n, R, P_2, V_1 = 1, then Tmax = 3/5 and Tmin = 1/4

so Tmax in terms of Tmin ---> (3/5)x = 1/4 --> x = 5/12 so Tmax = (5/12)Tmin

i'm not sure if i am correct because i need gamma in the answer, gamma = Cp/Cv
 
Last edited:
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
8K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
14
Views
2K
Replies
3
Views
3K
Replies
1
Views
1K
Replies
2
Views
4K
Replies
8
Views
3K