How is the Maxwell-Boltzmann Distribution Derived?

Click For Summary
The discussion focuses on the derivation of the Maxwell-Boltzmann distribution, highlighting the partition function and the integration process involved. Participants express confusion regarding the correct formulation of the partition function, particularly the presence of a volume term and the correct sign in the exponential. There are suggestions to change to spherical coordinates for integration and to clarify the contributions from one particle. Additionally, users note potential typos in the original equations that could affect the derivation. The conversation emphasizes the need for accuracy in mathematical expressions to ensure a proper understanding of the distribution.
Heisenberg2001
Messages
2
Reaction score
0
Homework Statement
Consider a monoatomic gas, whose momentum relation is ##\vec{p}=m\vec{v}##, where ##\vec{v}## is the three-dimensional velocity of the gas particles.


1. Show that the classical partition function can be written as $$z=\frac{4\pi m^3}{h^3}\int dv v^2e^{\beta \frac{mv^2}{2}}.$$

2. Let ##f(v)=Av^2e^{\beta \frac{mv^2}{2}}.## Find ##A## such that ##\int_{0}^{\infty}dv f(v)=1.##
Relevant Equations
##\vec{p}=m\vec{v}\, , \,z=\frac{4\pi m^3}{h^3}\int dv v^2e^{\beta \frac{mv^2}{2}}##

##f(v)=Av^2e^{\beta \frac{mv^2}{2}}\, , \,\int_{0}^{\infty}dv f(v)=1##
1.

##\vec{p}=m\vec{v}##

##H=\frac{\vec{p}^2}{2m}+V=\frac{1}{2}m\vec{v}^2##

##z=\frac{1}{(2\pi \hbar)^3}\int d^3\vec{q}d^3\vec{p}e^{-\beta H(\vec{p},\vec{q})}##

##z=\frac{Vm^3}{(2\pi \hbar)^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

##z=\frac{Vm^3}{(2\pi \frac{h}{2\pi})^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

##z=\frac{Vm^3}{h^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

I am lost at this point of the solution. Can someone assist me with this?

2.

##\int_{0}^{\infty}dv f(v)=1##

##\int_{0}^{\infty}Av^2e^{\beta \frac{mv^2}{2}}dv=1##

##A\int_{0}^{\infty}v^2e^{\beta \frac{mv^2}{2}}dv=1##

##A\frac{1}{4\left(\frac{\beta m}{2} \right)}\sqrt{\frac{\pi}{\frac{\beta m}{2}}}=1##

##A=\sqrt{\frac{4\beta ^3m^3}{2\pi}}##

##A=4\pi \sqrt {\left(\frac{\beta m}{2\pi} \right)^3}##

##A=4\pi \left( \frac{m}{2\pi k_BT} \right)^\frac{3}{2}##
 
Last edited by a moderator:
Physics news on Phys.org
Heisenberg2001 said:
I am lost at this point of the solution. Can someone assist me with this?
Change to spherical coordinates and integrate the angles out.
 
vela said:
Change to spherical coordinates and integrate the angles out.
There would still be a minus sign left in the exponential and a volume term V outside.
 
gurbir_s said:
There would still be a minus sign left in the exponential and a volume term V outside.
It appears ##z## is the contribution from just one particle to the partition function, and there should be a factor of ##V##. Also, the exponential should have a minus sign. It could simply be typos by the OP.
 
vela said:
It appears ##z## is the contribution from just one particle to the partition function, and there should be a factor of ##V##. Also, the exponential should have a minus sign. It could simply be typos by the OP.
Yes, ##z## should be the contribution from one particle only as the integral is over a 6d phase space.
 
Also note that a - is missing in the exponential ;-).
 
vanhees71 said:
Also note that a - is missing in the exponential ;-).
How do I edit the equations that I have typed? I can't see an edit button.
 
After a short period of time, posts cannot be edited. Paste your latex into a fresh new post, then edit it to make your changes. Or add comments....