How is the Maxwell-Boltzmann Distribution Derived?

Click For Summary

Homework Help Overview

The discussion revolves around the derivation of the Maxwell-Boltzmann distribution, focusing on the mathematical expressions and integrals involved in the process. Participants are examining the partition function and its components in the context of statistical mechanics.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to derive the partition function and are questioning specific steps in the integration process, particularly regarding the treatment of variables and the presence of signs in the exponential terms. Some are suggesting changes to spherical coordinates to simplify the integration.

Discussion Status

The discussion is ongoing, with participants expressing confusion about certain steps and seeking clarification. There are indications of potential typos in the original post, and some participants are providing guidance on how to correct or clarify the equations presented.

Contextual Notes

There are mentions of specific constraints related to the editing of posts and the need to present equations clearly, which may affect how participants communicate their thoughts and corrections.

Heisenberg2001
Messages
2
Reaction score
0
Homework Statement
Consider a monoatomic gas, whose momentum relation is ##\vec{p}=m\vec{v}##, where ##\vec{v}## is the three-dimensional velocity of the gas particles.


1. Show that the classical partition function can be written as $$z=\frac{4\pi m^3}{h^3}\int dv v^2e^{\beta \frac{mv^2}{2}}.$$

2. Let ##f(v)=Av^2e^{\beta \frac{mv^2}{2}}.## Find ##A## such that ##\int_{0}^{\infty}dv f(v)=1.##
Relevant Equations
##\vec{p}=m\vec{v}\, , \,z=\frac{4\pi m^3}{h^3}\int dv v^2e^{\beta \frac{mv^2}{2}}##

##f(v)=Av^2e^{\beta \frac{mv^2}{2}}\, , \,\int_{0}^{\infty}dv f(v)=1##
1.

##\vec{p}=m\vec{v}##

##H=\frac{\vec{p}^2}{2m}+V=\frac{1}{2}m\vec{v}^2##

##z=\frac{1}{(2\pi \hbar)^3}\int d^3\vec{q}d^3\vec{p}e^{-\beta H(\vec{p},\vec{q})}##

##z=\frac{Vm^3}{(2\pi \hbar)^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

##z=\frac{Vm^3}{(2\pi \frac{h}{2\pi})^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

##z=\frac{Vm^3}{h^3}\int d^3 \vec{v}e^{-\beta \frac{mv^2}{2}}##

I am lost at this point of the solution. Can someone assist me with this?

2.

##\int_{0}^{\infty}dv f(v)=1##

##\int_{0}^{\infty}Av^2e^{\beta \frac{mv^2}{2}}dv=1##

##A\int_{0}^{\infty}v^2e^{\beta \frac{mv^2}{2}}dv=1##

##A\frac{1}{4\left(\frac{\beta m}{2} \right)}\sqrt{\frac{\pi}{\frac{\beta m}{2}}}=1##

##A=\sqrt{\frac{4\beta ^3m^3}{2\pi}}##

##A=4\pi \sqrt {\left(\frac{\beta m}{2\pi} \right)^3}##

##A=4\pi \left( \frac{m}{2\pi k_BT} \right)^\frac{3}{2}##
 
Last edited by a moderator:
Physics news on Phys.org
Heisenberg2001 said:
I am lost at this point of the solution. Can someone assist me with this?
Change to spherical coordinates and integrate the angles out.
 
vela said:
Change to spherical coordinates and integrate the angles out.
There would still be a minus sign left in the exponential and a volume term V outside.
 
gurbir_s said:
There would still be a minus sign left in the exponential and a volume term V outside.
It appears ##z## is the contribution from just one particle to the partition function, and there should be a factor of ##V##. Also, the exponential should have a minus sign. It could simply be typos by the OP.
 
vela said:
It appears ##z## is the contribution from just one particle to the partition function, and there should be a factor of ##V##. Also, the exponential should have a minus sign. It could simply be typos by the OP.
Yes, ##z## should be the contribution from one particle only as the integral is over a 6d phase space.
 
Also note that a - is missing in the exponential ;-).
 
vanhees71 said:
Also note that a - is missing in the exponential ;-).
How do I edit the equations that I have typed? I can't see an edit button.
 
After a short period of time, posts cannot be edited. Paste your latex into a fresh new post, then edit it to make your changes. Or add comments....
 

Similar threads

Replies
4
Views
838
  • · Replies 5 ·
Replies
5
Views
3K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
27
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K