How Many Distinct Birthdays in a Room of k People?

  • Thread starter Thread starter mXSCNT
  • Start date Start date
mXSCNT
Messages
310
Reaction score
1
This is a restatement of the vocabulary problem which I introduced in https://www.physicsforums.com/showthread.php?t=293553. Perhaps these terms will be more familiar/less ambiguous.

Suppose we are on a planet where each year has n days, and in a room with k people. If birthdays are uniformly distributed throughout the year, how many distinct birthdays, j, do we expect to find in the room? (Alternatively, how many birthdays n-j are NOT represented in the room, on average?)
 
Physics news on Phys.org
Here's the answer (someone else's idea): j = n - n * (1-1/n)^k. The probability that a given day is nobody's birthday is (1-1/n)^k, so the expected number of days that are nobody's birthday is n * (1-1/n)^k.
 
I think that, since its distinct birthdays (from what I understand, distinct bdays are only the ones that don't coincide on the same day), you will have nCk bdays total, thus the expected number on any given day would be (nCk)/n since they're uniformly distributed.

There will also be nC(n-k) bdays that don't happen, once again the expected number would be nC(n-k)/n since they're uniform. I'm not sure about this, but I think its intuitive.
 
Let X be the number of distinct birthdays, and for 1 \leq i \leq n define Xi to be 1 if there's at least one person whose birthday is on the ith day, and 0 otherwise. Then X = X1 + X2 + ... + Xn, so:

E(X) = \sum _{i=1} ^n E(X_i) = nE(X_1)

E(X1)
= Prob(at least one person has their birthday on day 1)
= 1 - Prob(no one has their birthday on day 1)
= 1 - (# of ways to arrange k birthdays amongst n-1 days, allowing repetition)/(# of ways to arrange k birthdays amongst n days, allowing repetition)
= 1 - \binom{n+k-2}{k} / \binom{n+k-1}{k}

So the final answer is:

\frac{nk}{n+k-1}
 
AKG said:
define Xi to be 1 if there's at least one person whose birthday is on the ith day, and 0 otherwise.
But doesn't the question as for distinct birthdays, ie Xi would be 1 if there is only one birthday on day i and 0 if there is not only one birthday on day i?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top