How shall we show that this limit exists?

Click For Summary
The discussion centers on proving the existence of the limit for the function defined by an integral over a finite volume. The limit in question involves the difference quotient of the function as the variable approaches zero. A key challenge is determining whether the limit can be taken inside the integral, as this is not always permissible. The author expresses frustration over this issue and seeks guidance on how to proceed with the proof. Clarification on the conditions under which limits can be interchanged with integration is needed to advance the solution.
Mike400
Messages
59
Reaction score
6
Moved from a technical forum
Let:

##\displaystyle f=\int_{V'} \dfrac{x-x'}{|\mathbf{r}-\mathbf{r'}|^3}\ dV'##

where ##V'## is a finite volume in space
##\mathbf{r}=(x,y,z)## are coordinates of all space
##\mathbf{r'}=(x',y',z')## are coordinates of ##V'##
##|\mathbf{r}-\mathbf{r'}|=[(x-x')^2+(y-y')^2+(z-z')^2]^{1/2}##

How to prove that:

##\lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x,y,z)-f(x,y,z)}{\Delta x}## exist
 
Physics news on Phys.org
What have you attempted to find the solution?
 
DrClaude said:
What have you attempted to find the solution?
##\lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x,y,z)-f(x,y,z)}{\Delta x}\\
=\lim\limits_{\Delta x \to 0}\dfrac{\displaystyle\int_{V'} \dfrac{(x+\Delta x)-x'}{|\mathbf{r}(x+\Delta x,y,z)-\mathbf{r'}|^3}\ dV' - \int_{V'} \dfrac{x-x'}{|\mathbf{r}(x,y,z)-\mathbf{r'}|^3}\ dV'}{\Delta x}\\
=\lim\limits_{\Delta x \to 0}\displaystyle\int_{V'}
\dfrac{\left( \dfrac{(x+\Delta x)-x'}{|\mathbf{r}(x+\Delta x,y,z)-\mathbf{r'}|^3}
-\dfrac{x-x'}{|\mathbf{r}(x,y,z)-\mathbf{r'}|^3} \right)}{\Delta x}dV'##

Now if only I could take the limit inside the integral (with respect to ##V'##), I can proceed to show the limit exists. One of my colleagues told me that we cannot always take such limits inside the integral. This is where I am stuck. Hope someone here can help. Thanks in advance.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...