How shall we show that this limit exists?

Click For Summary
The discussion centers on proving the existence of the limit for the function defined by an integral over a finite volume. The limit in question involves the difference quotient of the function as the variable approaches zero. A key challenge is determining whether the limit can be taken inside the integral, as this is not always permissible. The author expresses frustration over this issue and seeks guidance on how to proceed with the proof. Clarification on the conditions under which limits can be interchanged with integration is needed to advance the solution.
Mike400
Messages
59
Reaction score
6
Moved from a technical forum
Let:

##\displaystyle f=\int_{V'} \dfrac{x-x'}{|\mathbf{r}-\mathbf{r'}|^3}\ dV'##

where ##V'## is a finite volume in space
##\mathbf{r}=(x,y,z)## are coordinates of all space
##\mathbf{r'}=(x',y',z')## are coordinates of ##V'##
##|\mathbf{r}-\mathbf{r'}|=[(x-x')^2+(y-y')^2+(z-z')^2]^{1/2}##

How to prove that:

##\lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x,y,z)-f(x,y,z)}{\Delta x}## exist
 
Physics news on Phys.org
What have you attempted to find the solution?
 
DrClaude said:
What have you attempted to find the solution?
##\lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x,y,z)-f(x,y,z)}{\Delta x}\\
=\lim\limits_{\Delta x \to 0}\dfrac{\displaystyle\int_{V'} \dfrac{(x+\Delta x)-x'}{|\mathbf{r}(x+\Delta x,y,z)-\mathbf{r'}|^3}\ dV' - \int_{V'} \dfrac{x-x'}{|\mathbf{r}(x,y,z)-\mathbf{r'}|^3}\ dV'}{\Delta x}\\
=\lim\limits_{\Delta x \to 0}\displaystyle\int_{V'}
\dfrac{\left( \dfrac{(x+\Delta x)-x'}{|\mathbf{r}(x+\Delta x,y,z)-\mathbf{r'}|^3}
-\dfrac{x-x'}{|\mathbf{r}(x,y,z)-\mathbf{r'}|^3} \right)}{\Delta x}dV'##

Now if only I could take the limit inside the integral (with respect to ##V'##), I can proceed to show the limit exists. One of my colleagues told me that we cannot always take such limits inside the integral. This is where I am stuck. Hope someone here can help. Thanks in advance.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
871
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
854
Replies
4
Views
2K