bsdz
- 5
- 0
Hi
I have a question regarding a PDE and change of variable. I can follow through the algebra but I have a problem deciding what route to take after I use the chain rule at a later point.
I have an expression: -
\frac{\partial^2 f}{\partial y^2}
and would like to make the variable substitution: -
y = k e^x
I first note that ,
\frac{dy}{dx} = k e^{x}
and
\frac{d^n y}{dx^n} = k e^{x} \; \forall n \ge 0
This is my initial calculation: -
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}( \frac{\partial f}{\partial x} \frac{\partial x}{\partial y})
= \frac{d x}{d y} \frac{d^2 f}{dy d x} + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} \frac{d}{dx}(\frac{df}{dy}) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} \frac{d}{dx}(\frac{df}{dx} \frac{dx}{dy}) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} (\frac{d^2f}{dx^2} \frac{dx}{dy} + \frac{df}{dx} \frac{d}{dx} (\frac{dx}{dy}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
However at this point I have two options on how I deal with the expression: -
\frac{d}{dx} (\frac{dx}{dy})
Option 1 is to substitute and deal with it in-line: -
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dx} (\frac{1}{ke^x}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
and note that,
\frac{dx}{dy} = \frac{1}{y} \Rightarrow \frac{d^2 x}{dy^2} = \frac{-1}{y^2} = \frac{-1}{(k e^x)^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dx} (\frac{1}{ke^x}) ) + \frac{d f}{d x} \frac{-1}{(k e^x)^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} (\frac{-1}{ke^x}) ) + \frac{d f}{d x} \frac{-1}{(k e^x)^2}
= \frac{1}{(ke^x)^2} (\frac{d^2f}{dx^2} - 2 \frac{df}{dx})
or Option 2 is to evaluate it to zero: -
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dy} (\frac{dx}{dx}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dy} (1) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + 0 ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{(ke^x)^2} (\frac{d^2f}{dx^2} - \frac{df}{dx})
How should I consider this? Perhaps I am wrong all the way? Should I take it from first principles and use a limit definition?
Blair
I have a question regarding a PDE and change of variable. I can follow through the algebra but I have a problem deciding what route to take after I use the chain rule at a later point.
I have an expression: -
\frac{\partial^2 f}{\partial y^2}
and would like to make the variable substitution: -
y = k e^x
I first note that ,
\frac{dy}{dx} = k e^{x}
and
\frac{d^n y}{dx^n} = k e^{x} \; \forall n \ge 0
This is my initial calculation: -
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}( \frac{\partial f}{\partial x} \frac{\partial x}{\partial y})
= \frac{d x}{d y} \frac{d^2 f}{dy d x} + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} \frac{d}{dx}(\frac{df}{dy}) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} \frac{d}{dx}(\frac{df}{dx} \frac{dx}{dy}) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{d x}{d y} (\frac{d^2f}{dx^2} \frac{dx}{dy} + \frac{df}{dx} \frac{d}{dx} (\frac{dx}{dy}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
However at this point I have two options on how I deal with the expression: -
\frac{d}{dx} (\frac{dx}{dy})
Option 1 is to substitute and deal with it in-line: -
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dx} (\frac{1}{ke^x}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
and note that,
\frac{dx}{dy} = \frac{1}{y} \Rightarrow \frac{d^2 x}{dy^2} = \frac{-1}{y^2} = \frac{-1}{(k e^x)^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dx} (\frac{1}{ke^x}) ) + \frac{d f}{d x} \frac{-1}{(k e^x)^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} (\frac{-1}{ke^x}) ) + \frac{d f}{d x} \frac{-1}{(k e^x)^2}
= \frac{1}{(ke^x)^2} (\frac{d^2f}{dx^2} - 2 \frac{df}{dx})
or Option 2 is to evaluate it to zero: -
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dy} (\frac{dx}{dx}) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + \frac{df}{dx} \frac{d}{dy} (1) ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{ke^x} (\frac{d^2f}{dx^2} \frac{1}{ke^x} + 0 ) + \frac{d f}{d x} \frac{d^2 x}{d y^2}
= \frac{1}{(ke^x)^2} (\frac{d^2f}{dx^2} - \frac{df}{dx})
How should I consider this? Perhaps I am wrong all the way? Should I take it from first principles and use a limit definition?
Blair