How should I find ## x_{2}(t) ## for this nonlinear integro-differential equation?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Nonlinear Proof
Click For Summary

Homework Help Overview

The discussion centers around a nonlinear integro-differential equation involving perturbation methods. The equation is given as $$ \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds $$, where $$ |\epsilon| << 1 $$ and $$ x(0)=A $$, with $$ \lambda $$ being a positive constant and $$ f(z) $$ a sufficiently well-behaved function.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to derive expressions for $$ x_{1}(t) $$ and $$ x_{2}(t) $$ using perturbation theory. Some participants question the clarity of the derivations and suggest breaking down long lines of LaTeX for better readability. Others inquire about specific integration techniques and the structure of the proof for $$ x(t) $$.

Discussion Status

The discussion is ongoing, with participants providing feedback on formatting and clarity. There is an exploration of different approaches to the problem, including the use of specific forms for the function $$ f(z) $$ and the implications of varying parameters. No explicit consensus has been reached, but guidance on formatting and structuring the problem has been offered.

Contextual Notes

Participants note the complexity of the problem and the potential need for breaking it into smaller parts for better understanding. There is also mention of the importance of integrating specific terms to progress in the solution.

Math100
Messages
823
Reaction score
234
Homework Statement
Consider the nonlinear integro-differential equation ## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##, where
## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Use perturbation methods to show that the solution of this equation can be expressed as ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##, where ## x_{0}(t)=Ae^{-\lambda t},
x_{1}(t)=x_{0}(t)\int_{0}^{t}\int_{0}^{\infty}f(u-s)x_{0}(s)dsdu,
x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##. If ## f(z)=e^{-\mu\lvert z \rvert}, \mu>0 ##, show that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ##,
for ## \mu\neq\lambda ##, and ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{2\lambda^{2}}(3(1-e^{-\lambda t})-2\lambda te^{-\lambda t}))+O(\epsilon^{2}) ##, for ## \mu=\lambda ##.
Relevant Equations
None.
Proof:

Consider the nonlinear integro-differential equation
## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##,
where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \frac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##.
This gives ## \frac{dx}{dt}=-\lambda x(t)\implies \frac{dx}{x}=-\lambda dt\implies\int\frac{dx}{x}
=-\lambda\int dt\implies ln\lvert x \rvert=-\lambda t+C\implies
x=Ce^{-\lambda t} ## where ## C ## is the constant of integration.
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t} ##.
Hence, ## x_{0}(t)=Ae^{-\lambda t} ##.
Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##
for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## into the original equation, we get ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))+\epsilon(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3})) ## for ## \lvert \epsilon \rvert<<1, x(0)=A ##, where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})
+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers
of ## \epsilon ## together.
Note that ## -\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds) ##,
so we have ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
This implies that ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies \frac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du
\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)ds ##.
Similarly, we have ## -\epsilon^{2}\lambda x_{2}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds=\epsilon^{2}(-\lambda x_{2}(t)
+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##,
which implies that ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
Thus, ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds\implies
x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du ##.

From here, how should I show/prove that ## x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##? Also, for the second part of the question/problem, I've constructed
a different proof as below:

Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds f(u-s)x_{0}(s) ##.
By using direct substitution of both ## x_{0}(t), x_{1}(t) ##,
we have ## x(t)=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\int_{0}^{\infty}ds
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\implies
x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}dsdu\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}dsdu)\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}dsdu)
\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}dsdu) ##.

And from here, how should I show/prove that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}
(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ## for
## \mu\neq\lambda, \mu>0 ##? Similarly, for ## \mu=\lambda ##?
 
Last edited:
Physics news on Phys.org
Please break up long lines of LaTeX so that readers don't have to scroll way off to the right to see the rest of the line. Each of the lines that contain an implication symbol could benefit from being split into multiple lines.
 
  • Like
Likes   Reactions: renormalize
Here's an example of what i mean by breaking up long lines. In your original post the stuff below was one long line that extended to about three times the width of my screen. My only changes were to break the line at points between equal expressions and terms of sums.
Math100 said:
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))##
##=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})##
##+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)##
##+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))##
##=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})##
##+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
 
  • Like
Likes   Reactions: SammyS and Math100
How to show that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}
-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})
-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ##
for ## \mu\neq\lambda ##? I know that I should integrate ## \int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}ds ## first,
but how should I integrate this?
 
I will reformat this mess so that it has a higher chance of a reply. I'm not an expert in perturbation theory so it's not an answer, but only the OP restructured. @Math100 , please hit the reply button to learn from the format for future posts and check for typos. Another remark: this has been a long text and it might have been better to split it into smaller steps and more than one thread. This also helps you to structure your work and concentrate on the steps you do not understand.
_____________________________________________________________________________​
Homework Statement: Consider the nonlinear integro-differential equation $$ \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds$$
where ##|\epsilon| <<1\, , \, x(0)=A \, , \, \lambda >0 ## is a constant and ## f(z) ## is a sufficiently well-behaved function.

Use perturbation methods to show that the solution of this equation can be expressed as $$ x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) \text{ where }$$
\begin{align*}
x_{0}(t)&=Ae^{-\lambda t}\\
x_{1}(t)&=x_{0}(t)\int_{0}^{t}\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds\,du\\
x_{2}(t)&=e^{-\lambda t}\int_{0}^{t}\,du\, e^{\lambda u}\int_{0}^{\infty}\,ds \,f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u))
\end{align*}
If ## f(z)=e^{-\mu\lvert z \rvert}## with ##\mu>0##, show that
$$
x(t)=\begin{cases}
Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) &\text{ if }\mu\neq\lambda\\[8pt]
Ae^{-\lambda t}(1+\frac{A\epsilon}{2\lambda^{2}}(3(1-e^{-\lambda t})-2\lambda te^{-\lambda t}))+O(\epsilon^{2})&\text{ if }\mu=\lambda
\end{cases}
$$
Proof: (without repeating the above constraints)

Consider the nonlinear integro-differential equation
$$\dfrac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)\,ds.$$
If ## \epsilon=0 ## the unperturbed equation is ## \dfrac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##. This gives
\begin{align*}
\dfrac{dx}{dt}=-\lambda x(t)&\implies \dfrac{dx}{x}=-\lambda dt \implies\int\dfrac{dx}{x}=-\lambda\int dt\\
&\implies ln\lvert x \rvert=-\lambda t+C \implies x=Ce^{-\lambda t}
\end{align*}
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t}, ## i.e. ## x_{0}(t)=Ae^{-\lambda t} ##.

Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion into the original equation, we get
\begin{align*}
\dfrac{d}{dt}&\left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) \right)\\
&=-\lambda \left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3})\right)\\
&\phantom{=}+\epsilon\left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3})\right) \int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds\\
&=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})\\
&\phantom{=}+\left(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}) \right) \int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds\\
&=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})\\
&\phantom{=}+\left(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3})\right)\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds
\end{align*}
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers of ## \epsilon .## Note that
$$-\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds)$$
so we have
$$ \dfrac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds .$$
This implies
\begin{align*}
\dfrac{dx_{1}}{dt}&=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\[6pt]
&\implies \dfrac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds \\
&\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds)\,du\\
&\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds .
\end{align*}
Similarly, we have
\begin{align*}
-\epsilon^{2}\lambda x_{2}(t)&+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}\,ds\\
&=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}\,ds\\
&=\epsilon^{2}(-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds
\end{align*}
which implies that $$\dfrac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds .$$
Thus,
\begin{align*}
\dfrac{dx_{2}}{dt}&=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty} f(t-s)x_{1}(s)\,ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\
&\implies \dfrac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)\,ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\
&\implies \dfrac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)\,ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds\\
&\implies x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)\,ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds)\,du
\end{align*}
From here, how should I show/prove that
$$
x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds \,f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) \text{ ?}
$$
Also, for the second part of the question/problem, I've constructed a different proof as below:

Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds \,f(u-s)x_{0}(s) .## By using direct substitution of both ## x_{0}(t), x_{1}(t) ##, we have
\begin{align*}
x(t)&=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\,\int_{0}^{\infty}ds\,
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\\
&\implies x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}\,ds\,du\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}\,ds\,du)\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}\,ds\,du)\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}\,ds\,du)
\end{align*}

And from here, how should I show/prove that
$$
x(t)=Ae^{-\lambda t}\left(1+\dfrac{A\epsilon}{\mu^{2}-\lambda^{2}}
\left(\dfrac{2\mu}{\lambda}\left(1-e^{-\lambda t}\right)-\dfrac{\mu+\lambda}{\mu}\left(1-e^{-\mu t}\right)\right)\right)+O(\epsilon^{2})
$$
for ## \mu\neq\lambda, \mu>0 \text{ ?}## Similarly, for ## \mu=\lambda \text{ ?}##
 
  • Like
Likes   Reactions: Math100
Use an integrating factor: \dot x + \lambda x = e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}). Hence \begin{split}<br /> e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}) &amp;= \epsilon \int_0^\infty f(t-s) x(t) x(s)\,ds \\<br /> x(t) &amp;= Ae^{-\lambda t} + \epsilon e^{-\lambda t} \int_0^t e^{\lambda u} \int_0^\infty f(u-s) x(u) x(s)\,ds\,du.\end{split}<br /> It is now straightforward to substitute x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + O(\epsilon^3) and read off the terms at O(\epsilon^0) etc.

To integrate \int_0^\infty h(|t-s|)g(s)\,ds, split the range of integration at t: \begin{split}<br /> \int_0^\infty h(|t-s|)g(s)\,ds &amp;= \underbrace{\int_0^t h(|t-s|)g(s)\,ds}_{0 \leq s \leq t} + <br /> \underbrace{\int_t^\infty h(|t-s|)g(s)\,ds}_{t \leq s &lt; \infty} \\<br /> &amp;= \int_0^t h(t-s)g(s)\,ds + \int_t^\infty h(s-t)g(s)\,ds.\end{split}
 
pasmith said:
Use an integrating factor: \dot x + \lambda x = e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}). Hence \begin{split}<br /> e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}) &amp;= \epsilon \int_0^\infty f(t-s) x(t) x(s)\,ds \\<br /> x(t) &amp;= Ae^{-\lambda t} + \epsilon e^{-\lambda t} \int_0^t e^{\lambda u} \int_0^\infty f(u-s) x(u) x(s)\,ds\,du.\end{split}<br /> It is now straightforward to substitute x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + O(\epsilon^3) and read off the terms at O(\epsilon^0) etc.

To integrate \int_0^\infty h(|t-s|)g(s)\,ds, split the range of integration at t: \begin{split}<br /> \int_0^\infty h(|t-s|)g(s)\,ds &amp;= \underbrace{\int_0^t h(|t-s|)g(s)\,ds}_{0 \leq s \leq t} +<br /> \underbrace{\int_t^\infty h(|t-s|)g(s)\,ds}_{t \leq s &lt; \infty} \\<br /> &amp;= \int_0^t h(t-s)g(s)\,ds + \int_t^\infty h(s-t)g(s)\,ds.\end{split}
I've got
\begin{align*}
\int_{0}^{\infty} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds &= \int_{0}^{t} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds + \int_{t}^{\infty} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds \\
&= \int_{0}^{t} e^{-\mu(u-s)-\lambda s} \, ds + \int_{t}^{\infty} e^{-\mu(s-u)-\lambda s} \, ds \\
&= e^{-\mu u} \int_{0}^{t} e^{(\mu-\lambda)s} \, ds + e^{\mu u} \int_{t}^{\infty} e^{-(\mu+\lambda)s} \, ds \\
&= e^{-\mu u} \left[\frac{e^{(\mu-\lambda)s}}{\mu-\lambda}\right]_{0}^{t} + e^{\mu u} \left[-\frac{e^{-(\mu+\lambda)s}}{\mu+\lambda}\right]_{t}^{\infty} \\
&= e^{-\mu u} \left(\frac{e^{(\mu-\lambda)t} - 1}{\mu - \lambda}\right) + e^{\mu u} \left(\frac{e^{-(\mu+\lambda)t}}{\mu + \lambda}\right).
\end{align*}
Is this correct?
 

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K