MHB How show that the points S, U and A are collinear?

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Points
AI Thread Summary
To show that points S, U, and A are collinear, it is established that SU is perpendicular to TG, leading to the conclusion that angle relationships involving points B, C, and their tangents at T are crucial. The angles formed by the intersections of lines and circles indicate that U lies on the circumcircle of triangle ABC. The discussion emphasizes the importance of understanding the geometric properties and relationships between these points. A visual representation of the problem is suggested to aid comprehension. The thread revolves around proving collinearity through geometric reasoning and angle analysis.
maxkor
Messages
79
Reaction score
0
Circle $\omega$ is described on $ABC$. The tangents to the $\omega$ at points $B$ and $C$ intersect at $T$.
Point $S$ lies on the line $BC$ and $AS \perp AT$. Points $B_1$ and $C_1$ are points of intersection of the circle with a radius of $TB$ and center at the $T$ with a line $ST$. Let $BC_{1}$ and $B_{1} C$ cut at the point $G$, and $BB_{1}$ and $CC_{1}$ at the point $U$.
How show that the points S, U and A are collinear?

My try:
Let O the center of circle $\omega$. $SU \perp TG$. So $2\angle BAC=\angle BOC = 180^{\circ}-\angle BTC=\angle BTB_{1}+\angle CTC_{1}=180^{\circ}-\angle BB_{1}T - \angle TBB_{1}+180^{\circ}-\angle CC_{1}T- \angle TCC_{1}=360^{\circ}-2\angle BB_{1}T-2\angle CC_{1}T=2\left(180^{\circ}-\angle BB_{1}T-\angle CC_{1}T\right)=2\left(180^{\circ}-\angle UB_{1}C_{1}-\angle UC_{1}B_{1}\right)=2\angle B_{1}UC_{1}=2\angle BUC$
thus U lies on the circle ABC. And what next?
 
Mathematics news on Phys.org
maxkor said:
Circle $\omega$ is described on $ABC$.
@maxkor, what does "described on ABC mean?"

A drawing of the problem would be very helpful.

maxkor said:
The tangents to the $\omega$ at points $B$ and $C$ intersect at $T$.
Point $S$ lies on the line $BC$ and $AS \perp AT$. Points $B_1$ and $C_1$ are points of intersection of the circle with a radius of $TB$ and center at the $T$ with a line $ST$. Let $BC_{1}$ and $B_{1} C$ cut at the point $G$, and $BB_{1}$ and $CC_{1}$ at the point $U$.
How show that the points S, U and A are collinear?

My try:
Let O the center of circle $\omega$. $SU \perp TG$. So $2\angle BAC=\angle BOC = 180^{\circ}-\angle BTC=\angle BTB_{1}+\angle CTC_{1}=180^{\circ}-\angle BB_{1}T - \angle TBB_{1}+180^{\circ}-\angle CC_{1}T- \angle TCC_{1}=360^{\circ}-2\angle BB_{1}T-2\angle CC_{1}T=2\left(180^{\circ}-\angle BB_{1}T-\angle CC_{1}T\right)=2\left(180^{\circ}-\angle UB_{1}C_{1}-\angle UC_{1}B_{1}\right)=2\angle B_{1}UC_{1}=2\angle BUC$
thus U lies on the circle ABC. And what next?
 
  • Like
Likes Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top