How to Build a Supercapacitor Dragster on a Budget?

AI Thread Summary
The discussion centers on a project involving students building a supercapacitor-based dragster for a short race. The proposed design includes a lightweight structure made from wood and powered by a small DC motor (Gikfun DC 3V-6V Motor 2000 RPM) and supercapacitors. The calculations indicate that a single 2.7V, 10F supercapacitor could theoretically provide enough energy for the race, but there are concerns about the supercapacitor's ability to deliver the necessary current for high-energy applications. Participants emphasize the importance of checking the supercapacitor's datasheet for maximum output current and motor efficiency, as these factors significantly affect energy requirements. Additionally, there is a request for recommendations on commercially available devices to charge supercapacitors efficiently, as building a DIY charger may be too time-consuming for students. Overall, the discussion highlights the need for careful consideration of component specifications and energy calculations to ensure the project's success.
Fred404
Messages
2
Reaction score
3
Hi all!

I’m currently working on a project for which students will have to build a supercapacitor based dragster.

I saw here and there some videos on how it works but it’s too general to give me hints about components choice. So here I am with my questions, hoping that I’ll get enough answers to go forward with this project ;)

So, here it is:

I want students to build a small dragster (basically very light, made of wood sticks and such, not a big thing!) to organize a contest (drag race) on very small distance (let say about 3 meters max).

As for any school project, the amount of money is limited! No way to build a drag for 50$ each unfortunately.

Here are the components I was thinking about:

A small dc motor Gikfun DC 3V-6V Motor 2000 RPM

Here are specs:

EK2153.jpg


I was planning to feed it up with supercapacitors only. I was thinking of supercapacitor 2.7V, 10F to build a power pack in parallel if needed.

Here is what I’ve done so far (if I’m not wrong):

Energy stored in the supercapacitor 2.7V/10F

E=1/2.C.U2

E = (1/2)* 10F * 2.722V

E= 36.45 JoulesResistance of the DC motor:

R = U/I

At Maximum Efficiency – according to specs – we have 0.94A for 3V

R = 3V/0.9A = 3.34 ohm
Time of charge tho (sorry, don’t know the translation in English) for this setting:

Tho = R . C = 3.34 ohm x 10F = 33.4 s
So, this means that if tho = 33.4s, after 33.4s, there will only 37% energy left in capacitor.

After 5x tho, the capacitor will be empty.
Energy required for the race:

This is where I think, calculation may be inaccurate cause it depends on the weight of car (the heavier, the more energy needed)

Let say the car is about 150g (0.15 Kg)

F = m x g
F = 0.15 x 9.81 = 1.47 N

For a 3 meters race:

W = F x d
W = 1.47 x 3 = 4.41 J

For the motor, at Max Efficiency, we have 0.94A at 3V (even though the supercapacitor will only deliver 2.7V) for a 5 sec race

P = UI and E = Pt
P = 3 x 0.94 = 2.82W
E = 2.82 x 5 = 14.1 Joules

So, all "energy needed together", this represents an overall total of 4.41 + 14.1 = 18.51 J

According to that, this means that 1 supercapacitor would be enough
But just to have "backup", I can add an extra capacitor in parallel, which should give me twice energy...

So, am I totaly out of field? Does it make sens?

Also, does someone knows if I can buy a device to charge supercapacitors? I've found a diy to build one but it may take too much time for students to build it! So I was wondering if I could find a device that would do the job so that would just have to go to a station to charge their drag!

Thanks for any inputs ;)

Fred
 
Science news on Phys.org
I haven't used supercaps much, but my impression is that they are for low output currents (like real time clock backup), not for high energy applications. I could be wrong about that though. Have you looked in detail at the supercap datasheet to see what it shows for maximum output current?
 
Fred404 said:
F = m x g
No. The force will be the wheel torque divided by the wheel radius, but can never exceed the tire friction force which is the tire-road friction coefficient times the vertical force acting on the driven wheel. (More info here and here.)

Fred404 said:
So, all "energy needed together", this represents an overall total of 4.41 + 14.1 = 18.51 J
No. The energy needed will be the calculated output energy (4.41 J in the example) divided by the motor efficiency (43.8 % from the chart given), thus 4.41 / 0.438 = 10.14 J.
 
Thanks for those inputs: I'll check closer for both!
I haven't checked the datasheet for capacitors since I didn't ordered them yet and just check what is avail!
 
Sequences and series are related concepts, but they differ extremely from one another. I believe that students in integral calculus often confuse them. Part of the problem is that: Sequences are usually taught only briefly before moving on to series. The definition of a series involves two related sequences (terms and partial sums). Both have operations that take in a sequence and output a number (the limit or the sum). Both have convergence tests for convergence (monotone convergence and...
Hi all, I am in the process of adding physics to my teachable subjects, and I have a project due soon where I have been asked to improve upon a Leaving Certificate Physics experiment. The only thing is I haven't actually taught physics yet, and was wondering if any teachers could share their thoughts on the experiments and any challenges you have faced or any improvements you would like to see made to the experiments.
Back
Top