How to Calculate how much a column buckles?

  • Thread starter Thread starter Quietrabbit
  • Start date Start date
  • Tags Tags
    Buckling Column
AI Thread Summary
To calculate the compression of a column under applied force, a postbuckling analysis is necessary, as traditional methods like Euler's equation only address critical buckling forces. The end connections of the columns significantly affect the buckling behavior and final shape, requiring consideration of support conditions. For accurate results, utilizing finite element analysis software such as ANSYS or ABAQUS is recommended for nonlinear analysis. The behavior of a buckled column can be approximated as a constant force spring after initial buckling. Understanding these principles is crucial for effective design without relying on trial and error.
Quietrabbit
Messages
19
Reaction score
1
TL;DR Summary
How to Calculate how much a column buckles. Ie horizontal measurement and new vertical length based on force applied.
I’m am looking for how to calculate the new horizontal and vertical “size” of a column based on the material and how much force is applied from the top/ends.
I have 3D printed TPU pillars that are made to compress and mold to a shape, but I am trying to figure out how much they will compress since that effects the shape I CAD. (I don’t want to trial and error the prints).
I have already looked into eulers equation but that seems to only give me the critical force which I know I am well past.
 

Attachments

  • A622540C-4995-4576-891A-88FDBD6FA84F.png
    A622540C-4995-4576-891A-88FDBD6FA84F.png
    6.1 KB · Views: 126
Engineering news on Phys.org
How are the end connections to the columns made?
That will determine the type of curve and the final chord length.
 
You will need to perform a postbuckling analysis which requires solving the large-deflection beam equation. An example of this can be found in Section 2.7 in "Theory of Elastic Stability" by Timoshenko and Gere. If their example does not match yours, you can try a search on postbuckling of beams.

If you have access to finite element analysis software with nonlinear analysis capability (e.g., ANSYS or ABAQUS), you could try doing your own analysis for your case.
 
The Euler equation predicts the force to buckle the column. That force, as alluded to by @Baluncore, is very dependent on the end support conditions. Your sketch shows simple supports, AKA pinned ends. Note that the Euler equation only applies to elastic buckling. Elastic buckling is when the column pops back to its starting shape after the load is removed.

After buckling, the force on an Euler column is roughly constant as the displacement increases. Two different search criteria that found good information are euler column constant force spring and post buckling euler columns. A good hit is this one: https://www.researchgate.net/figure...-spring-The-example-shown-here_fig1_349575713. One figure from that paper that shows this is:
Euler spring.jpg

That paper also has some references that look good.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly

Similar threads

Back
Top