How to Calculate π^σ If We Have 2 Disjoint Cycles?

  • Thread starter Thread starter FoxMCloud
  • Start date Start date
  • Tags Tags
    Challenge
FoxMCloud
Messages
3
Reaction score
0
Suppose we have 2 disjoint cycles π and σ. How can one calculate π^σ?
I know how to calculate σ^2 or σ^3 but I can't figure out how to solve that.
 
Physics news on Phys.org
Are you talking about cycles in the sense of cyclic permutations? The first question would be how we define \pi^\sigma.
 
Yes cyclic permuations. For example if\pi= (147)(263859) and σ=(16789)(2345) how can we calculate \pi^σ
 
FoxMCloud said:
Yes cyclic permuations. For example if\pi= (147)(263859) and σ=(16789)(2345) how can we calculate \pi^σ

How did you define ##\pi^\sigma##? Did you define it as ##\sigma \circ \pi \circ \sigma^{-1}##?
 
Last edited:
I think it's something along the lines of σ^(-1)*\pi*σ. But then again, I'm not seeing how can I calculate σ^(-1).
 
FoxMCloud said:
I think it's something along the lines of σ^(-1)*\pi*σ. But then again, I'm not seeing how can I calculate σ^(-1).

If you have one cycle, then you can find the inverse by reversing the cycle. So if \sigma = (1 ~2~5~3), then \sigma^{-1} = (3~5~2~1)

Then if you have a more general form, then you can calculate the inverse by the formula ##(\sigma\tau)^{-1}= \tau^{-1}\sigma^{-1}##.

For example, if you have ##(1~4~6)(3~2)##, then the inverse is ##(2~3)(6~4~1)##.

So now you can find ##\sigma^{-1}## and thus also ##\pi^\sigma##. However, for a general theorem which makes this a LOT easier: http://www.proofwiki.org/wiki/Cycle_Decomposition_of_Conjugate
 
  • Like
Likes 1 person
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top