How to calculate the efficiency of a fuel engine

Click For Summary
SUMMARY

The discussion focuses on calculating the efficiency of a gasoline engine using the control volume approach. The primary equation used is W_cv - Q_cv = HV + delta H_r - delta H_p + H_r0 - H_p0, where W_cv represents the work done by the engine and HV is the heat value of the fuel. The user seeks clarification on whether the heat value (HV) can be considered the total energy input into the engine and how to accurately compute efficiency using the formula efficiency = W_cv / HV. The importance of understanding enthalpy differences and mass flow rates is emphasized for accurate calculations.

PREREQUISITES
  • Understanding of thermodynamics principles, particularly energy conservation in control volumes.
  • Familiarity with enthalpy calculations and combustion processes.
  • Knowledge of mass flow and molar flow rates in thermodynamic systems.
  • Ability to interpret and apply thermodynamic equations related to engine efficiency.
NEXT STEPS
  • Study the concept of control volumes in thermodynamics for better understanding of energy transfers.
  • Learn about the calculation of enthalpy changes in combustion reactions.
  • Research the significance of heat value (HV) in evaluating fuel efficiency.
  • Explore advanced thermodynamic cycles and their application in engine performance analysis.
USEFUL FOR

This discussion is beneficial for mechanical engineers, thermodynamics students, and automotive engineers involved in engine design and efficiency optimization.

Imolopa
Messages
20
Reaction score
0

Homework Statement


[/B]
Im trying to find the efficiency of a gasoline engine regarded as a control volume. Am I right to use the HV as total energy input into the system?

Assuming the enthalpy of formation of the fuel can't be found.

I am really wondering if enthalpy of formation equals the enthalpy of a component at the temperature T = 298 K?

Mass flows of air, fuel are known.

Complete combustion is assumed.

Mass flow or molar flow of each component is multiplied with each corresponding enthalpy value to get the energy transfer per second

W_cv - Q_cv = HV + delta H_r - delta H p + H_r0 - H_p0

W_cv = work done by control volume [J/s] = mechanical work done by engine

Q_cv = heat exchange with surroundings [J/s]where Q_cv = Q_exhaust + Q_engineheatlossHV = Heat Value of the fuel [J/s]

delta H_p = sum of enthalpy difference of products relative to enthalpy of formation at 298 K [J/s]

delta H_r = sum of enthalpy difference of reactants relative to enthalpy of formation at 298 K [J/s] = 0

H_r0 = sum of enthalpies of formation of reactants [J/s]

H_p0 = sum of enthalpies of formation of products [J/s]

T_r = T_ambient = 298 K

T_p = T_exhaust = 773 K

Homework Equations



W_cv - Q_cv = HV + delta H_r - delta H p + H_r0 - H_p0

The Attempt at a Solution



As I understand it the total energy input into the engine would be the HV of the fuel, I assume this is equivalent to the value printed as energy content on the bottle/container following the fluid from the store.

To ease calculations I added up the enthalpies first in the below equation as I understood our professor, in such a way that I did not use massflow/molarflow rates of each component because I am correct when assuming that the sum of moles into the system equals the sum of moles out of the same system?::

H_r = H_p0 + HV

Finally I multiplied H_r with the molar flow of fuel into the system to get the total energy input which gave me different values when I used molar flow rates from the start (which makes me wonder if my calculations are wrong or method?)So in order to find the efficiency of the engnine we are interested in the work done by the engine, W_cv.Since efficiency in general is given by:

efficiency = useful work output /.total energy input = W_cv / HV

Also the energy lost through the exhaust would be I guess:
Q_exhaust = delta H_p

.
 
Last edited:
Physics news on Phys.org
I don't really see where you are going with this . You can define the efficiency of your 'engine' in one line .

Have you studied even basic thermodynamics ?
 
Last edited:
Nidum said:
I don't really see where you are going with this . You can define the efficiency of your 'engine' in one line .

Have you studied even basic thermodynamics ?

Yes I have had a subject in thermodynamics at university last year. However we havn't gone through combustion in that course, just barely.

The equation from my thermodynamics book that we used in the course from a chapter that we did not go through is:
W_cv - Q_cv = HV + delta H_r - delta H p + H_r0 - H_p0

My professor that don't know so much about thermodynamics in our lab course claimed that the following is true:
H_r = H_p0 + HV is valid

Also she claimed that HV here would be the energy content value found on the bottle/container of the fuel.

I am simply wondering what I need in order to find the efficiency for the engine, in other words if it is correct to use the relation:
efficiency = useful work output /.total energy input = W_cv / HV

Where Work done by the engine is a value that is given. So in other words does HV represent the total energy input into the engine?
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
9K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
18
Views
8K
Replies
1
Views
8K
Replies
16
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K