How to Calculate the Equation of a Tangent Line to a Circle?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Tangent
Click For Summary
SUMMARY

This discussion focuses on calculating the equation of a tangent line to a circle defined by its center \(M=(x_0, y_0)\) and radius \(r\). The tangent line at point \(P_1=(x_1, y_1)\) is derived using the slopes of the line segments \(MP\) and the tangent, leading to the equation \((y_1-y_0)(y-y_0)+(x_1-x_0)(x-x_0)=r^2\). Additionally, an alternative representation using the Hesse normal form is introduced, emphasizing the relationship between the tangent line and the circle's radius. The discussion also touches on the scenario where point \(P\) lies outside the circle.

PREREQUISITES
  • Understanding of coordinate geometry, specifically circles and tangents.
  • Familiarity with slope calculations and linear equations.
  • Knowledge of vector operations, including dot products and projections.
  • Basic grasp of the Hesse normal form of a line.
NEXT STEPS
  • Study the derivation of the Hesse normal form for lines in detail.
  • Explore the geometric interpretation of tangent lines to circles.
  • Learn about the properties of circles and tangents in advanced coordinate geometry.
  • Investigate applications of tangent lines in calculus, particularly in optimization problems.
USEFUL FOR

Mathematics students, educators, and professionals in fields requiring geometric analysis, such as physics and engineering, will benefit from this discussion on tangent lines and their equations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $K$ be a circle with center $M=(x_0 \mid y_0)$ and radius $r$ and let $P_1=(x_1\mid y_1)$ be a point of the circle.

I have done the following tofind the equation of the tangent that passes through $P_1$:
The tangent passes through $P_1$ and is perpendicular to $MP$, then let $m_T$ be the slope of the tangent and $m_{MP}$ be the slope of $MP$, then it holds that $m_T\cdot m_{MP}=-1$.

The equation of the tangent is in the form $y=m_Tx+n$.

The slope of $MP$ is $\frac{y_1-y_0}{x_1-x_0}$. The slope of the tangent is therefore \begin{equation*}m_T=-\frac{1}{m_{MP}}=-\frac{1}{\frac{y_1-y_0}{x_1-x_0}}=-\frac{x_1-x_0}{y_1-y_0}\end{equation*}

We get that \begin{equation*}y=-\frac{x_1-x_0}{y_1-y_0}x+n\end{equation*}

Since the tangent passes through $P_1=(x_1\mid y_1)$, it satisfies the equation of the tangent, so we have the following: \begin{equation*}y_1=-\frac{x_1-x_0}{y_1-y_0}x_1+n \Rightarrow n=y_1+\frac{x_1-x_0}{y_1-y_0}x_1\end{equation*}

The equation of the tangent is therefore \begin{align*}&y=-\frac{x_1-x_0}{y_1-y_0}x+y_1+\frac{x_1-x_0}{y_1-y_0}x_1 \\ & \Rightarrow (y_1-y_0)y=-(x_1-x_0)x+y_1(y_1-y_0)+(x_1-x_0)x_1 \\ & \Rightarrow (y_1-y_0)y=-(x_1-x_0)x+y_1(y_1-y_0)-y_0(y_1-y_0)+y_0(y_1-y_0)+(x_1-x_0)x_1-(x_1-x_0)x_0+(x_1-x_0)x_0 \\ & \Rightarrow (y_1-y_0)y=-(x_1-x_0)x+(y_1-y_0)(y_1-y_0)+y_0(y_1-y_0)+(x_1-x_0)(x_1-x_0)+(x_1-x_0)x_0 \\ & \Rightarrow (y_1-y_0)y=-(x_1-x_0)x+(y_1-y_0)^2+y_0(y_1-y_0)+(x_1-x_0)^2+(x_1-x_0)x_0 \\ & \Rightarrow (y_1-y_0)y=-(x_1-x_0)(x-x_0)+(y_1-y_0)^2+y_0(y_1-y_0)+(x_1-x_0)^2 \\ & \Rightarrow (y_1-y_0)y-y_0(y_1-y_0)+(x_1-x_0)(x-x_0)=(y_1-y_0)^2+(x_1-x_0)^2 \\ & \Rightarrow (y_1-y_0)(y-y_0)+(x_1-x_0)(x-x_0)=(y_1-y_0)^2+(x_1-x_0)^2\end{align*}

The equation of the circle is $(x-x_0)^2+(y-y_0)^2=r^2$. Since $P_1$ is a point of the circle we have that $(x_1-x_0)^2+(y_1-y_0)^2=r^2$.

So we get the following equation of the tangent: \begin{equation*}(y_1-y_0)(y-y_0)+(x_1-x_0)(x-x_0)=r^2\end{equation*}
Is everything correct? (Wondering) Let $K$ be a circle with center $M(x_0\mid y_0)$ and radius $r$. For each point $P$ outside the circle, let $g_P$ be the line through the two intersection points of the tangent to $K$ by $O$.

What do we do in this case where $P$ is outside the circle to determine the equation of the tangent? Could you give me a hint?
 
Physics news on Phys.org
Hey mathmari! (Smile)

mathmari said:
So we get the following equation of the tangent: \begin{equation*}(y_1-y_0)(y-y_0)+(x_1-x_0)(x-x_0)=r^2\end{equation*}

Is everything correct? (Wondering)

Yep. All correct. (Nod)

mathmari said:
Let $K$ be a circle with center $M(x_0\mid y_0)$ and radius $r$. For each point $P$ outside the circle, let $g_P$ be the line through the two intersection points of the tangent to $K$ by $O$.

What do we do in this case where $P$ is outside the circle to determine the equation of the tangent? Could you give me a hint?

Let's consider an alternative for the first part first.

We can express the equation of the tangent as:
$$(\mathbf x - \mathbf x_0)\cdot \mathbf n = r \tag 1$$
where $\mathbf x$ is a vector on the tangent line, $\mathbf x_0 = (x_0 \mid y_0)$, and $\mathbf n$ is the normal vector of unit length.
That is, the distance of the tangent line to the center must be $r$.
Or put otherwise, the projection of the vector from the center to a point on the tangent onto the normal vector of unit length must have length $r$.

In our particular case, we can pick:
$$\mathbf n = \frac{\mathbf x_1 - \mathbf x_0}{\|\mathbf x_1 - \mathbf x_0\|} = \frac{\mathbf x_1 - \mathbf x_0}{r}$$
where $\mathbf x_1 = (x_1 \mid y_1)$

When we substitute this $\mathbf n$ in $(1)$, it follows that:
$$(\mathbf x - \mathbf x_0)\cdot \frac{\mathbf x_1 - \mathbf x_0}{r} = r
\quad\Rightarrow\quad (\mathbf x - \mathbf x_0)\cdot (\mathbf x_1 - \mathbf x_0) = (x-x_0)(x_1-x_0) + (y-y_0)(y_1-y_0) = r^2
$$
(Thinking)Okay. Now let's get back to the second part.
It means that we can again write the equation of the tangent as:
$$(\mathbf x - \mathbf x_0)\cdot \mathbf n = r$$
In particular this holds for $\mathbf P$:
$$(\mathbf P - \mathbf x_0)\cdot \mathbf n = r$$
Can we solve $\mathbf n$ from that? (Wondering)
 
I like Serena said:
Let's consider an alternative for the first part first.

We can express the equation of the tangent as:
$$(\mathbf x - \mathbf x_0)\cdot \mathbf n = r \tag 1$$
where $\mathbf x$ is a vector on the tangent line, $\mathbf x_0 = (x_0 \mid y_0)$, and $\mathbf n$ is the normal vector of unit length.
That is, the distance of the tangent line to the center must be $r$.
Or put otherwise, the projection of the vector from the center to a point on the tangent onto the normal vector of unit length must have length $r$.
I haven't really understood why we can write equation of the tangent as $(\mathbf x - \mathbf x_0)\cdot \mathbf n = r$.
The difference $\mathbf x - \mathbf x_0$ is equal to $ \mathbf x_0\mathbf x$, right? Why do we multiply that by the normal vector of unit length to get the radius? (Wondering)
 
mathmari said:
I haven't really understood why we can write equation of the tangent as $(\mathbf x - \mathbf x_0)\cdot \mathbf n = r$.
The difference $\mathbf x - \mathbf x_0$ is equal to $ \mathbf x_0\mathbf x$, right? Why do we multiply that by the normal vector of unit length to get the radius? (Wondering)

Let's first take a look at what a dot product is.
And in particular how it related to projection.
View attachment 6972
See this article about scalar projection.

More specifically, we can find the projection function $\boldsymbol\pi_{\mathbf n}(\mathbf x)$ that projects a vector $\mathbf x$ onto a vector $\mathbf n$.
\begin{tikzpicture}[>=stealth]
\draw[->, green!70!black, thick] (0,0) -- (4,0) node[below] {$\boldsymbol\pi_{\mathbf n}(\mathbf x)= (\mathbf x\cdot \mathbf n)\mathbf n$};
\draw[->, blue, ultra thick] (0,0) -- node[above left] {$\mathbf x$} (4,3);
\draw[->, red, ultra thick] (0,0) -- node[below] {$\mathbf n$} (1,0);
\draw[green!70!black] (4,0) rectangle +(-0.3,0.3);
\draw[green!70!black, thick, dashed] (4,3) -- (4,0) rectangle +(-0.3,0.3);
\end{tikzpicture}

The projection function is given by:
$$\boldsymbol\pi_{\mathbf n}(\mathbf x) = \frac{\mathbf x\cdot\mathbf n}{\mathbf n \cdot \mathbf n}\ \mathbf n \tag 1$$
In the case that $\mathbf n$ is a vector of unit length, we can simplify this to:
$$\boldsymbol\pi_{\mathbf n}(\mathbf x)= (\mathbf x\cdot \mathbf n)\mathbf n \tag 2$$Are you with me so far? (Wondering)
Next is how we can use this in combination with the Hesse normal form of a line.
 

Attachments

  • 200px-Dot_Product.svg.png
    200px-Dot_Product.svg.png
    2.1 KB · Views: 117

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
Replies
26
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K