How to Calculate the Indefinite Integral of a Complex Function?

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Indefinite Integration
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the indefinite integral of a complex function, specifically the integral of the form $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx$. Participants explore various methods and approaches to solve this integral, including substitution techniques and simplification of the integrand.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest simplifying the integrand by dividing each term by $x^6$ and expanding the brackets to facilitate integration using the power rule.
  • Others propose using substitution techniques, with one participant noting the difficulty in choosing the appropriate part of the integrand for substitution.
  • A specific substitution $u=\frac{\sqrt[4]{x^{10}+x^8+1}}{x}$ is discussed, with detailed differentiation leading to a more manageable integrand.
  • Another participant presents a different substitution approach, letting $(x^6+x^{4}+x^{-4}) = t^4$, which leads to a straightforward integral form.

Areas of Agreement / Disagreement

Participants express various methods and approaches to the integral, but there is no consensus on a single solution or method. Multiple competing views remain on how best to tackle the problem.

Contextual Notes

Some participants note the complexity of the integrand and the challenges in selecting appropriate substitutions, which may depend on individual interpretations of the integral's structure.

juantheron
Messages
243
Reaction score
1
Calculation of $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx$

$\bf{My\; Try::}

$ Given $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx = \int\frac{\sqrt{x^6+x^4+x^{-4}}}{x^5}\cdot \left(3x^{10}+2x^{8}-2\right)dx$

Now How can I calculate after that

thanks
 
Physics news on Phys.org
jacks said:
Calculation of $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx$

$\bf{My\; Try::}

$ Given $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx = \int\frac{\sqrt{x^6+x^4+x^{-4}}}{x^5}\cdot \left(3x^{10}+2x^{8}-2\right)dx$

Now How can I calculate after that

thanks

The easiest way to proceed would be to simplify the integrand by dividing each term by $\displaystyle \begin{align*} x^6 \end{align*}$ (remember that $\displaystyle \begin{align*} \sqrt[4]{x^{10}} = x^{\frac{10}{4}} = x^{\frac{5}{2}} \end{align*}$), and then expanding the brackets. Each term can then be integrated using the power rule.
 
Hi jacks,

You've no idea how much I like this problem! It is like one of the most delicious problems that I've seen this year! Thank you for bringing this problem up here so that we can have a stab at it and at the same time, enjoy it to the fullest!

One way of approaching this problem is to use the substitution technique. But the hardest part is to decide which part of the integrand should be replaced by the substitution.

We also know we can't simply let $u=\sqrt[4]{x^{10}+x^8+1}$ because it will give us $\dfrac{du}{dx}=\dfrac{x^7(5x^2+4)}{2(x^{10}+x^8+1)^{3/4}}$, and it gives us more a headache integrand, that complicated the problem even more.

So, we need some u substitution that after differentiation is done, we would get something like $\dfrac{du}{dx}=\dfrac{3x^{10}+2x^8-2}{?}$, and our next trial is to let

$u=\dfrac{\sqrt[4]{x^{10}+x^8+1}}{x}$, and notice that

1. after differentiation, we get $\dfrac{du}{dx}=\dfrac{3x^{10}+2x^8-2}{2x^2(x^{10}+x^8+1)^{\dfrac{3}{4}}}$, or $dx=\dfrac{2x^2((x^{10}+x^8+1)^{\dfrac{3}{4}})}{3x^{10}+2x^{8}-2}$

2. $(x^{10}+x^8+1)^{\dfrac{3}{4}}=u^3x^3$$\begin{align*}\therefore \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx&=\int \frac{\sqrt[4]{x^{10}+x^8+1}}{x}\cdot \left(\dfrac{3x^{10}+2x^{8}-2}{x^5}\right)dx\\&=\int u\cdot \left(\dfrac{3x^{10}+2x^{8}-2}{x^5}\right) \dfrac{2x^2((x^{10}+x^8+1)^{\dfrac{3}{4}})}{3x^{10}+2x^{8}-2}du\\&=\int \dfrac{2u(u^3x^3)}{x^3} du\\&=\int 2u^4 du\\&=\dfrac{2u^5}{5}+C\\&=\dfrac{2\left(\dfrac{\sqrt[4]{x^{10}+x^8+1}}{x}\right)^5}{5}\\&=\dfrac{2(x^{10}+x^8+1)^{\dfrac{5}{4}}}{5x^5}\end{align*}$

Honestly speaking, the choice of the substitution of $u=\dfrac{\sqrt[4]{x^{10}+x^8+1}}{x}$ is my 5th or 6th trial.
 
jacks said:
Calculation of $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx$

Thanks anemone and prove it. Now i have got it.

My Solution::

Given $\displaystyle \int \frac{\sqrt[4]{x^{10}+x^8+1}}{x^6}\cdot \left(3x^{10}+2x^{8}-2\right)dx= \int\frac{\sqrt[4]{x^6+x^4+x^{-4}}}{x^5}\cdot \left(3x^{10}+2x^{8}-2\right)dx$So Integral is $\displaystyle \int \sqrt[4]{x^6+x^{4}+x^{-4}}\cdot \left(3x^5+2x^3-2x^{-5}\right)dx$

Now Let $\left(x^6+x^{4}+x{-4}\right) = t^4\;\;,$ Then $\displaystyle \left(3x^5+2x^3-2x^{-5}\right)dx = 2t^3dt$

So Integral is $\displaystyle I = 2\int t^4dt = \frac{2}{5}t^5+\mathcal{C} = \frac{2}{5}\left(x^6+x^{4}+x^{-4}\right)^{\frac{5}{4}}+\mathcal{C}$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K