please correct me if I am wrong -
a field at a point ##\vec{P}## defined by
##\vec{E}## = f( P.l , P.m, P.n )## \hat{i}## + g( P.l , P.m, P.n )## \hat{j}## + h( P.l , P.m, P.n )## \hat{k}##
where l, m , n are dir cosines of ##\vec{P}##
is always conservative if can be proved that ----
there exist a fixed point ##\vec{A}## (fixed in the frame wrt which ##\vec{P}## is defined)
such that for every ##\vec{P}## (ranging over all points in R3), the expression
f( P.l , P.m, P.n )## \hat{i}## + g( P.l , P.m, P.n )## \hat{j}## + h( P.l , P.m, P.n )## \hat{k}##
can always be reduced to
w(|## \vec{AP} ##|) ## \hat{AP}## (note here w varies only over |## \vec{AP} ##|)
can this answer post#1 ? (ive proved something extra but is this proof sufficient?)