MHB How to Compute a Definite Integral with Symmetry: The Case of $f(-x)=f(x)$

Click For Summary
The discussion focuses on computing the definite integral $$\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ under the condition that the function satisfies $f(-x)=f(x)$. It is noted that the calculations are valid only if the integrand $\frac{1}{1+2^{f(x)}}$ does not have vertical asymptotes. A clarification is made that the original intent was for $f$ to be an odd function, where $f(-x)=-f(x)$. Participants express enthusiasm for the problem-solving process and share solutions. The thread emphasizes the importance of function properties in evaluating definite integrals.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Suppose $f(-x)=f(x)$, then compute the following definite integral:

$$\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ where $0<a\in\mathbb{R}$.
 
Mathematics news on Phys.org
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Note : Although not related to the original problem that was meant, it is not worthless to note that the calculations above works only if $\frac{1}{1+2^{f(x)}}$ has no vertical asymptotes.
 
Last edited:
mathbalarka said:
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Haha...that is quite correct (well done!)...but I messed up and actually meant for $f$ to be odd, i.e.:

$$f(-x)=-f(x)$$

(Bug)
 
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$
 
mathbalarka said:
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$

That's correct! :D

Here's my solution:

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}-\frac{1}{2}+\frac{1}{2}\,dx$$

$$I=\frac{1}{2}\int_{-a}^{a}\frac{1-2^{f(x)}}{1+2^{f(x)}}+\frac{1}{2}\int_{-a}^{a}\,dx$$

The first integrand is odd, and the second even, hence:

$$I=0+\int_0^a\,dx=a$$
 
Great thread! (Heidy) :D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K