MHB How to Compute a Definite Integral with Symmetry: The Case of $f(-x)=f(x)$

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Suppose $f(-x)=f(x)$, then compute the following definite integral:

$$\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ where $0<a\in\mathbb{R}$.
 
Mathematics news on Phys.org
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Note : Although not related to the original problem that was meant, it is not worthless to note that the calculations above works only if $\frac{1}{1+2^{f(x)}}$ has no vertical asymptotes.
 
Last edited:
mathbalarka said:
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Haha...that is quite correct (well done!)...but I messed up and actually meant for $f$ to be odd, i.e.:

$$f(-x)=-f(x)$$

(Bug)
 
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$
 
mathbalarka said:
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$

That's correct! :D

Here's my solution:

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}-\frac{1}{2}+\frac{1}{2}\,dx$$

$$I=\frac{1}{2}\int_{-a}^{a}\frac{1-2^{f(x)}}{1+2^{f(x)}}+\frac{1}{2}\int_{-a}^{a}\,dx$$

The first integrand is odd, and the second even, hence:

$$I=0+\int_0^a\,dx=a$$
 
Great thread! (Heidy) :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top