How to Compute a Definite Integral with Symmetry: The Case of $f(-x)=f(x)$

Click For Summary

Discussion Overview

The discussion revolves around computing a definite integral involving a function with specific symmetry properties, initially posed with the condition that $f(-x)=f(x)$, and later corrected to $f(-x)=-f(x)$. The integral in question is $$\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ where $0

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant proposes to compute the integral under the assumption that $f(-x)=f(x)$.
  • Another participant notes that the calculations are valid only if the integrand $\frac{1}{1+2^{f(x)}}$ does not have vertical asymptotes.
  • A later post corrects the initial assumption, stating that $f$ should actually be an odd function, i.e., $f(-x)=-f(x)$.
  • One participant expresses agreement with the correction and shares their solution.
  • Another participant expresses enthusiasm for the thread.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the initial condition of the function's symmetry, as there is a correction from even to odd symmetry. The discussion reflects multiple viewpoints regarding the implications of these conditions on the integral.

Contextual Notes

The discussion does not resolve the implications of the vertical asymptotes on the integral or the impact of changing the function's symmetry from even to odd.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Suppose $f(-x)=f(x)$, then compute the following definite integral:

$$\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$ where $0<a\in\mathbb{R}$.
 
Physics news on Phys.org
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Note : Although not related to the original problem that was meant, it is not worthless to note that the calculations above works only if $\frac{1}{1+2^{f(x)}}$ has no vertical asymptotes.
 
Last edited:
mathbalarka said:
$$\int_{-a}^{a} \frac{d x}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{f(x)}} = 2\int_{0}^{a} \frac{dx}{1+2^{f(x)}}$$

Haha...that is quite correct (well done!)...but I messed up and actually meant for $f$ to be odd, i.e.:

$$f(-x)=-f(x)$$

(Bug)
 
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$
 
mathbalarka said:
$$\int_{-a}^{a} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{-a}^{0} \frac{dx}{1+2^{f(x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} - \int_{a}^{0} \frac{dx}{1+2^{f(-x)}} = \int_{0}^{a} \frac{dx}{1+2^{f(x)}} + \int_{0}^{a} \frac{dx}{1+2^{-f(x)}} \\ = \int_{0}^{a} \left ( \frac{1}{1+2^{f(x)}} + \frac{1}{1+2^{-f(x)}} \right ) dx = \int_{0}^{a} \frac{2 + 2^{f(x)} + 2^{-f(x)}}{2 + 2^{f(x)} + 2^{-f(x)}} dx = a$$

That's correct! :D

Here's my solution:

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}\,dx$$

$$I=\int_{-a}^{a}\frac{1}{1+2^{f(x)}}-\frac{1}{2}+\frac{1}{2}\,dx$$

$$I=\frac{1}{2}\int_{-a}^{a}\frac{1-2^{f(x)}}{1+2^{f(x)}}+\frac{1}{2}\int_{-a}^{a}\,dx$$

The first integrand is odd, and the second even, hence:

$$I=0+\int_0^a\,dx=a$$
 
Great thread! (Heidy) :D
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K