How to Compute Coordinate Column Vectors in Different Bases?

Click For Summary
SUMMARY

This discussion focuses on computing coordinate column vectors in different bases for the vector space \( H \) defined by matrices of the form \( \begin{pmatrix} a & b+ic \\ b-ic & d \end{pmatrix} \). The bases \( B \) and \( C \) are established using matrices \( E_{k\ell} \) and the Pauli matrices \( \sigma_0, \sigma_1, \sigma_2, \sigma_3 \), respectively. The transformation matrix \( A_{\text{id}, B,C} \) is derived, confirming that \( v_C = A_{\text{id}, B,C} \cdot v_B \) holds true for the coordinate vectors \( v_B \) and \( v_C \). The final transformation matrix is \( A_{\text{id}, B,C} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2} \end{pmatrix} \).

PREREQUISITES
  • Understanding of vector spaces and bases in linear algebra.
  • Familiarity with complex matrices and their representations.
  • Knowledge of transformation matrices and their properties.
  • Proficiency in using Pauli matrices in quantum mechanics or linear algebra.
NEXT STEPS
  • Study the properties of transformation matrices in linear algebra.
  • Learn about the applications of Pauli matrices in quantum mechanics.
  • Explore the concept of change of basis in vector spaces.
  • Investigate the implications of coordinate transformations in complex vector spaces.
USEFUL FOR

Mathematicians, physicists, and students studying linear algebra or quantum mechanics, particularly those interested in coordinate transformations and matrix representations in complex vector spaces.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the matrices $E_{k\ell}\in \mathbb{R}^{2\times 2}$ with $1$ iin the position $(k,\ell)$ and $0$ in the other positions and \begin{equation*}\sigma_0=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}, \ \sigma_1=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, \ \sigma_2=\begin{pmatrix}0&-i\\ i&0\end{pmatrix}, \ \sigma_3=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \ \in \mathbb{C}^{2\times 2}\end{equation*}

We have the bases $\displaystyle{B=\left (E_{11}, \ E_{12}+E_{21}, \ i(E_{12}-E_{21}), \ E_{22}\right )}$ and $\displaystyle{C=\left (\sigma_0, \ldots , \sigma_3\right )}$ of $\mathbb{R}$-vector space \begin{equation*}H:=\left \{\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}\in \mathbb{C}^{2\times 2}: a, b, c, d\in \mathbb{R}\right \}\end{equation*}

Compute for $v\in H$ the coordinate column vectors $v_B$ and $v_C$ and verify that $v_C=A_{\text{id}, B,C}\cdot v_B$. I have done the following:

Let $v\in H$. Then $v=\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}$ for $a, b, c, d\in \mathbb{R}$.

Let $v_B=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $B$ are real matrices, we have that $x,y,z,w\in \mathbb{R}$.

Then \begin{equation*}v=x\cdot E_{11}+y\cdot \left ( E_{12}+E_{21} \right )+z \cdot \left [ i(E_{12}-E_{21})\right ]+ w \cdot E_{22}\end{equation*}

So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \left [ \begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}+\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix} \right ]+z \cdot i\cdot \left [\begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}-\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix}\right ]+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \begin{pmatrix}0& 1 \\ 1 & 0\end{pmatrix}+z \cdot i\cdot \begin{pmatrix}0& 1 \\ -1 & 0\end{pmatrix}+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = \begin{pmatrix}x& 0 \\ 0 & 0\end{pmatrix}+ \begin{pmatrix}0& y \\ y & 0\end{pmatrix}+ \begin{pmatrix}0& z \cdot i \\ -z \cdot i & 0\end{pmatrix}+ \begin{pmatrix}0& 0 \\ 0 & w\end{pmatrix} \\ & = \begin{pmatrix}x& y+z \cdot i \\ y-z \cdot i & w\end{pmatrix} \end{align*}

So, we get:
\begin{equation*}\begin{cases}a=x \\ b+ic=y+iz \\ b-ic = y-iz \\ d=w\end{cases}\ \Rightarrow \ \begin{cases}x=a \\ y=b \\ z=c \\ w=d\end{cases}\end{equation*}

The coordinate column vector of $v$ in respect to the basis $B$ is \begin{equation*}v_B=\begin{pmatrix}a \\ b \\ c \\ d \end{pmatrix}\end{equation*}



Let $v_C=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $C$ are complex matrices, we have that $x,y,z,w\in \mathbb{C}$.

Then \begin{equation*}v=x\cdot \sigma_0+y\cdot \sigma_1+z \cdot \sigma_2+ w \cdot \sigma_3\end{equation*}

So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1&0\\ 0&1\end{pmatrix}+y\cdot \begin{pmatrix}0&1\\ 1&0\end{pmatrix}+z \cdot \begin{pmatrix}0&-i\\ i&0\end{pmatrix}+ w \cdot \begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \\ & = \begin{pmatrix}x&0\\ 0&x\end{pmatrix}+ \begin{pmatrix}0&y\\ y&0\end{pmatrix}+ \begin{pmatrix}0&-z \cdot i\\ z \cdot i&0\end{pmatrix}+ \begin{pmatrix}w&0\\ 0&-w\end{pmatrix} \\ & = \begin{pmatrix}x+w&y-z \cdot i\\ y+z \cdot i&x-w\end{pmatrix} \end{align*}

We get that
\begin{equation*}\begin{cases}a=x+w \\ b+ic=y-iz \\ b-ic = y+iz \\ d=x-w\end{cases}\end{equation*}

The coordinate column vector of $v$ in respect to the basis $C$ is \begin{equation*}v_C=\begin{pmatrix}\frac{a+d}{2} \\ b \\ -c \\ \frac{a-d}{2} \end{pmatrix}\end{equation*}
Is everything correct so far? (Wondering)

How could we compute $A_{\text{id}, B,C}$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is everything correct so far?

Hey mathmari!

It looks correct to me. (Nod)

mathmari said:
How could we compute $A_{\text{id}, B,C}$ ?

What is $A_{\operatorname{id}, B,C}$ exactly?
Is it the transformation matrix for a vector with respect to B to a vector with respect to C?
Or the other way around? (Wondering)Anyway, let me write $A_{B\to C}$ for the matrix that transforms a vector with respect to basis B to a vector with respect to basis C.
Then we must have that:
$$v_C = A_{B\to C}\ v_B$$
yes? (Wondering)

We also have:
$$v_E= A_{B\to E}\ v_B = ( B_1 B_2 B_3 B_4)\ v_B$$
$$v_E= A_{C\to E}\ v_C = ( C_1 C_2 C_3 C_4)\ v_C$$
and:
$$A_{C\to E} = A_{E\to C}^{-1}$$

Can we find $A_{B\to C}$ (or $A_{C\to B}$ if that was intended) from that? (Wondering)Btw, you've effectively already (almost) found $A_{B\to H}$ and $A_{C\to H}$.
(What is the basis of $H$ anyway? And which are $A_{B\to H}$ and $A_{C\to H}$ exactly?)
So we can also find $A_{B\to C} = A_{H\to C}\ A_{B\to H}$ from that, can't we?
If it comes out the same, we have confirmation that you're previous calculations were correct. (Happy)
 
I like Serena said:
We also have:
$$v_E= A_{B\to E}\ v_B = ( B_1 B_2 B_3 B_4)\ v_B$$
$$v_E= A_{C\to E}\ v_C = ( C_1 C_2 C_3 C_4)\ v_C$$
and:
$$A_{C\to E} = A_{E\to C}^{-1}$$

Can we find $A_{B\to C}$ (or $A_{C\to B}$ if that was intended) from that? (Wondering)
What is $E$ ? An other basis?

We have that $A_{B\to C}=A_{E\to C}\cdot A_{B\to E}$, right? (Wondering)
I like Serena said:
Btw, you've effectively already (almost) found $A_{B\to H}$ and $A_{C\to H}$.
(What is the basis of $H$ anyway? And which are $A_{B\to H}$ and $A_{C\to H}$ exactly?)
So we can also find $A_{B\to C} = A_{H\to C}\ A_{B\to H}$ from that, can't we?
If it comes out the same, we have confirmation that you're previous calculations were correct. (Happy)

We have that a basis of $H$ is $$\left \{\begin{pmatrix}1& 0\\ 0&0\end{pmatrix}, \begin{pmatrix}0& 1\\ 1&0\end{pmatrix}, \begin{pmatrix}0& i\\ -i&0\end{pmatrix} , \begin{pmatrix}0& 0\\ 0&1\end{pmatrix}\right \}$$ right? (Wondering)

$A_{B\to H}$ is the matrix of coefficients $a_{ij}$ of $T(b_j)=\sum a_{ij}h_i$, where $T=\text{id}$, right? (Wondering)
 
mathmari said:
Let $v_C=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $C$ are complex matrices, we have that $x,y,z,w\in \mathbb{C}$.

Isn't C a basis for a $\mathbb R$-vector space?
Shouldn't we have $x,y,z,w\in \mathbb{R}$ then? (Wondering)

mathmari said:
What is $E$ ? An other basis?

We have that $A_{B\to C}=A_{E\to C}\cdot A_{B\to E}$, right?

$E$ is the standard basis, which was also given in your problem statement.
And yes, that would hold.
But let's forget about that for now, since your problem statement only said to 'verify'.

mathmari said:
We have that a basis of $H$ is $$\left \{\begin{pmatrix}1& 0\\ 0&0\end{pmatrix}, \begin{pmatrix}0& 1\\ 1&0\end{pmatrix}, \begin{pmatrix}0& i\\ -i&0\end{pmatrix} , \begin{pmatrix}0& 0\\ 0&1\end{pmatrix}\right \}$$ right?

Indeed.
Hey! Isn't that the same as the basis $B$? (Wondering)

mathmari said:
$A_{B\to H}$ is the matrix of coefficients $a_{ij}$ of $T(b_j)=\sum a_{ij}h_i$, where $T=\text{id}$, right? (Wondering)

What are $a_{ij}$, $b_j$, and $h_i$? (Wondering)

$A_{B\to H}$ is the matrix such that when multiplying it with a vector wrt to B, we find the corresponding vector wrt to H, such that they describe the same actual vector. (Nerd)Anyway, we have:
$$
\begin{pmatrix}a\\b\\c\\d\end{pmatrix}
= v_H = A_{B\to H}\cdot v_B = A_{B\to H}\ \begin{pmatrix}x\\y\\z\\w\end{pmatrix}
$$
and you found that:
$$
\begin{pmatrix}a\\b\\c\\d\end{pmatrix}
= \begin{pmatrix}x\\y\\z\\w\end{pmatrix}
$$
So $A_{B\to H} = \operatorname{id}$ isn't it?

And if we can find $A_{C\to H}$ similarly, we have that $A_{B\to C} = A_{C\to H}^{-1}\cdot A_{B\to H}$ don't we? (Wondering)
 
Can we do it also as follows?

We write the elements of $B$ as a linear combination of elements of $C$.

We have that
\begin{align*}&\text{id}(E_{11})=E_{11}=\frac{1}{2}\cdot \sigma_0+0\cdot \sigma_1+0\cdot \sigma_2+\frac{1}{2}\cdot \sigma_3\\ &\text{id}(E_{12}+E_{21})=E_{12}+E_{21}=0\cdot \sigma_0+1\cdot \sigma_1+0\cdot \sigma_2+0\cdot \sigma_3 \\ & \text{id}(i[E_{12}-E_{21}])=i[E_{12}-E_{21}]=0\cdot \sigma_0+0\cdot \sigma_1+(-1)\cdot \sigma_2+0\cdot \sigma_3 \\ & \text{id}(E_{22})=E_{22}=\frac{1}{2}\cdot \sigma_0+0\cdot \sigma_1+0\cdot \sigma_2+\left (-\frac{1}{2}\right )\cdot \sigma_3 \end{align*}

So, we get that \begin{equation*}A_{\text{id}, B,C}=\begin{pmatrix}\frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0& 1& 0 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2}\end{pmatrix}\end{equation*}

Therefore we have that
\begin{equation*}A_{\text{id}, B,C}\cdot v_B=\begin{pmatrix}\frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0& 1& 0 & 0 \\ 0 & 0 & -1 & 0 \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2}\end{pmatrix}\cdot \begin{pmatrix}a \\ b \\ c \\ d \end{pmatrix}=\begin{pmatrix} \frac{a+d}{2} \\ b \\ -c \\ \frac{a-d}{2}\end{pmatrix}=v_C\end{equation*}
 
Yep. That works as well. (Nod)
 
I like Serena said:
Yep. That works as well. (Nod)

Great! Thank you so much! (Mmm)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
31
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
4K