MHB How to Derive Answers Using N Formula

  • Thread starter Thread starter DYLAN4321
  • Start date Start date
  • Tags Tags
    Derive
DYLAN4321
Messages
4
Reaction score
0
Hi,

I have been given the attachment formula and asked to enter this into an excel spreadsheet. Although I am not entirely sure how the answer was derived. Is anyone able to explain step by step as I want to try and enter this into an excel spreadsheet. For reference N = Newtons
 

Attachments

  • equation.png
    equation.png
    5.7 KB · Views: 114
Mathematics news on Phys.org
DYLAN4321 said:
Hi,

I have been given the attachment formula and asked to enter this into an excel spreadsheet. Although I am not entirely sure how the answer was derived. Is anyone able to explain step by step as I want to try and enter this into an excel spreadsheet. For reference N = Newtons
I believe you were suggested to look up a solution method, the Newton-Raphson approximation being one method mentioned. Do you have a solution method you would like to use? Excel will not simply solve it for you.

-Dan
 
There is no "N" in the given equation so there can be no "N" in the answer! Have you left something out?
 
DYLAN4321 said:
I have been given the attachment formula and asked to enter this into an excel spreadsheet.
It is not clear what your Excel formula is supposed to compute: $$\frac{7134611197}{T_2^2}-T_2$$ for the given value of $T_2$, the value of $T_2$ for the given left-hand side of this equation or something else. Also, for $T_2=956$ we have $$\frac{7134611197}{T_2^2}-T_2\approx6850$$ and not $6863$.

topsquark said:
I believe you were suggested to look up a solution method, the Newton-Raphson approximation being one method mentioned.
Mentioned where? This is a quadratic equation in $T_2$.

HallsofIvy said:
There is no "N" in the given equation
N is the units in which $T_2$ is measured.
 
Evgeny.Makarov said:
Mentioned where? This is a quadratic equation in $T_2$.
The OP also posted this on another site. Sorry, I should have included the link to it.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top