How to derive the period of non-circular orbits?

  • Thread starter Thread starter TheMisterOdd
  • Start date Start date
  • Tags Tags
    Derivation Period
TheMisterOdd
Messages
1
Reaction score
0
Homework Statement
How to derive the period of non-circular orbits?
Relevant Equations
$$

T = \sqrt{\frac{4 r_0^3}{\tilde m}} \int_{1}^{r_{min}/r_0}\frac{\rho}{\sqrt{\left ( 1 - \rho \right) \left (\rho - \frac{\ell^2}{\tilde mr_0} \left (1 +\rho \right) \right )} } \; d\rho

$$
By conservation of mechanical energy:
$$
E(r_0)=-\frac{GMm}{r_0}+\frac{1}{2}\mu \left (\dot{r_0}^2+r_0^2 \omega_0^2 \right)
$$
where R0 =Rmax. Because our body is located at the apoapsis the radial velocity is 0. Hence:
$$
E(r_0)=-\frac{GMm}{r_0}+\frac{1}{2}\mu (r_0\omega_0)^2
$$
By the conservation of angular momentum we have:
$$
\omega_0 =\frac{L}{\mu r^2}
$$
$$
E(r_0)=-\frac{GMm}{r_0}+\frac{L^2}{2 \mu r_0^2}
$$
Then, we can relate the radius r at any given time, to the initial energy:
$$
-\frac{GMm}{r} + \frac{1}{2}\mu \left (\frac{dr}{dt} \right)^2 + \frac{L^2}{2 \mu r^2}= -\frac{GMm}{r_0}+\frac{L^2}{2 \mu r_0^2}
$$
$$
\left (\frac{dr}{dt} \right)^2 = \frac{2GMm}{\mu} \left ( \frac{1}{r} - \frac{1}{r_0} \right) + \frac{L^2}{\mu^2} \left ( \frac{1}{r_0^2} - \frac{1}{r^2} \right)
$$
Let
$$\tilde m = \frac{2GMm}{\mu}, \; \ell^2 = \frac{L^2}{\mu^2}$$
$$
\left (\frac{dr}{dt} \right)^2 = \frac{\tilde m}{r} \left ( 1 - \frac{r}{r_0} \right) - \frac{\ell^2}{r^2} \left (1 - \frac{r^2}{r_0^2} \right)
$$
Rearranging a little bit:
$$
\frac{1}{\sqrt{\tilde m}} \int_{r_0}^{r_{min}}\frac{\sqrt{r} \; dr}{\sqrt{\left ( 1 - \frac{r}{r_0} \right) \left (1 - \frac{\ell^2}{\tilde mr} \left (1 + \frac{r}{r_0} \right) \right )}} = \int_0^{T/2} dt
$$
In the radial integral, the limits of integration go from, R0 to Rmin, covering half of the elliptic path of the orbit. This would take T/2 seconds. Because of this, our limits of integration, for t, are 0 and T/2.
Let's define $$\rho = r/r_0$$
$$
dr = r_0 \; d \rho
$$
We finally get:
$$
T = \sqrt{\frac{4 r_0^3}{\tilde m}} \int_{1}^{r_{min}/r_0}\frac{\rho}{\sqrt{\left ( 1 - \rho \right) \left (\rho - \frac{\ell^2}{\tilde mr_0} \left (1 +\rho \right) \right )} } \; d\rho
$$
Solving this integral yields a formula for the period of a body orbiting a star, planet or other celestial body. Is this line of reasoning right? Is this integral even possible to solve? I would appreciate any hint.
 
Physics news on Phys.org
Have you tried to (re)search what the orbital period of an elliptical orbit is?
 
TheMisterOdd said:
Solving this integral yields a formula for the period of a body orbiting a star, planet or other celestial body. Is this line of reasoning right? Is this integral even possible to solve? I would appreciate any hint.
I didn't see anything wrong with what you did, but there is a simpler approach based on Kepler's second law. The body sweeps out area at a constant rate, so the period is the area of the ellipse divided by the rate.
 
From the Kepler equation you get [EDIT: corrected in view of #5]
$$T^2=\frac{4 \pi^2 a^3}{GM},$$
where ##M=M_{\text{sun}}+M_{\text{planet}}##, which for our solar system is approximately ##M_{\text{sun}}##, because even Jupiter has a mass much smaller than that of the Sun (about 1/1000 of the mass of the Sun).
 
Last edited:
vanhees71 said:
From the Kepler equation
The ##4\pi## should be ##4\pi^2##.
 
Thanks. I've corrected the typo.
 
  • Like
Likes Filip Larsen
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top