How to integrate cos( sin(x) ) from 0 to pi

  • #1
761
13

Homework Statement



[tex]
\int_{0}^{\pi} \cos ( \sin x ) \mbox{d}x
[/tex]




The Attempt at a Solution



If I use [itex]u = \pi-x [/itex] I get :



[tex]
\int_{0}^{\pi} \cos ( \sin x ) \mbox{d}x = \int_{0}^{\pi} \sin ( \cos x ) \mbox{d}x
[/tex]

but then what?
 

Answers and Replies

  • #2


That reminds me of a definition of the Bessel function in terms of integrals...
 
  • #3


So n = 0 here:

[tex] J_n(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos (n \tau - x \sin \tau) \,\mathrm{d}\tau. [/tex]
 
  • #4


So n = 0 here:

[tex] J_n(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos (n \tau - x \sin \tau) \,\mathrm{d}\tau. [/tex]

Sure. n=0, x=1.
 

Suggested for: How to integrate cos( sin(x) ) from 0 to pi

Replies
5
Views
490
Replies
9
Views
474
Replies
44
Views
2K
Replies
25
Views
279
Replies
2
Views
359
Replies
2
Views
542
Replies
6
Views
566
Replies
2
Views
468
Back
Top