Matter_Matters said:
Hello there, I've been considering the geodesic equations of motion for a test particle in Schwarzschild geometry for some time now. Similar to what we can do with the Kepler problem I would like to be able to numerically integrate the equations of motion. I'm quite interested to see how coordinate time and proper time change over a simulation and also the trajectory itself. But the problem is.. I have no idea how to do that. Any suggestions?
The Schwarzschild geodesic has a couple of conserved quantites that mean you don't have to numerically integrate the equations, you can solve them analytically by taking advantage of the existence of these constants of motion.
Sean Caroll discusses this in his lecture notes on GR, though it's not an easy read. The applicable concept is called "Killing Vectors", a quote from the relevant section (found at
https://www.preposterousuniverse.com/grnotes/) is:
There does not seem to be much hope for simply solving this set of coupled equations by inspection. Fortunately our task is greatly simplified by the high degree of symmetry of the Schwarzschild metric. We know that there are four Killing vectors: three for the spherical symmetry, and one for time translations. Each of these will lead to a constant of the motion
For another online reference,
http://www.fourmilab.ch/gravitation/orbits/ might or might not be easier to follow - it is taken pretty much from MTW's treatment in "Gravitation", which would be a better source than the above (being more detailed and of better provenance) - if you can get a hold of it. This approach is a bit more physical, they give the conserved quantites names, like "energy at infinity" and "angular momentum". The resulting equations are rather similar to how we might solve for motion in the Newtonian case by taking advantage of energy and angular momentum conservation.
It might help to review the "effective potential" method for the discussion in the second link. Orbits occur in a plane, so they're basically two dimensional. So one can introduce unit vectors ##\hat{r}## and ##\hat{\phi}## in the Newtonian case to describe the orbital plane, the former being in the radial direction, the other being at right angles to the radial vector in the orbital plane.
By the conservation of angular momentum, one can write a relationship between the the rate of change of ##\phi## and the radial distance r. This gives the non-radial component of the velocity. Knowing the radial and transverse-to-radial components of the velocity, we can get the total kinetic energy, and using the fact that energy is conserved, we can solve for the radial and transverse components of the velocity at any point.
The "effective potential" method is basically a matter of interpreting this solution as the motion of a 1 dimensional particle in a force field that gives the proper solution for the radial component of the motion. Many texts should discuss the effective potential method, including Goldstein's "Classical Mechanics".