How to perform a integral in momentum space

Click For Summary
The discussion focuses on the process of performing integrals in momentum space, specifically addressing a transition between two lines in an integral expression. A participant questions the validity of the integral's transformation, suggesting an alternative form involving a factor of $$\frac{4 \pi}{(2 \pi)^3}$$ and an integral over momentum. The presence of a ##\cos(\theta)## term in the dot product is highlighted as a key factor that influences the integration process. This term leads to differences in the exponential functions when integrating over ##d(\cos(\theta))##. Understanding these nuances is crucial for accurately performing integrals in momentum space.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
NA
Relevant Equations
NA
1618768318260.png
I am not sure how does the integral was did here. More preciselly, How to go from the first line to the second line? Shouldn't it be $$\frac{4 \pi}{(2 \pi)^3} \int _{0} ^{\infty} p^2 e^{ip*r}/(2 E_p)$$ ? (x-y is purelly spatial)
 
Physics news on Phys.org
There is a ##\cos(\theta)## in the dot product which brings out the ipr and causes the difference in the exponentials when you integrate over ##d(\cos(\theta))##
 
Last edited:
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

Replies
4
Views
517
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K