How to perform a integral in momentum space

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
NA
Relevant Equations
NA
1618768318260.png
I am not sure how does the integral was did here. More preciselly, How to go from the first line to the second line? Shouldn't it be $$\frac{4 \pi}{(2 \pi)^3} \int _{0} ^{\infty} p^2 e^{ip*r}/(2 E_p)$$ ? (x-y is purelly spatial)
 
Physics news on Phys.org
There is a ##\cos(\theta)## in the dot product which brings out the ipr and causes the difference in the exponentials when you integrate over ##d(\cos(\theta))##
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top