How to prove a car must turn in a curve?

  • Thread starter Thread starter hihiip201
  • Start date Start date
  • Tags Tags
    Car Curve
Click For Summary
A car must turn in a curve due to the differential speeds of its wheels, particularly the outer wheel moving faster than the inner wheel. When the steering wheel is angled, the front wheels align differently than the rear, creating a slip angle that aids in turning. The design of the car allows for this differential motion, with the back wheels rotating and translating to maintain stability. Understeer is a common characteristic in vehicles, where the front wheels have a greater slip angle than the rear, enhancing control during turns. Understanding these dynamics is crucial for grasping how cars navigate curves effectively.
  • #31
The cars inertia will try to make it go in a straight line (a tangent to the curve). The front wheels point in a different direction so they provide a sideways force on the front of the car.

In effect inertia is trying to drag the froont wheels sideways and it's friction that provides the sideways force making the car turn. On ice you go straight on!

The same applies to an un powered soap box cart so makes no difference if the car is front or rear wheel drive.
 
Physics news on Phys.org
  • #32
hihiip201 said:
And are these "inward" forces reaction forces normal to the planes of the front wheels caused by the "forward" forces on front wheels by the back wheels?
That would imply it would only go around a bend if it were driven! If the wheels are not being braked, then there are no tangential forces on any of the wheels. Have you looked at all diagrams, read the google hits and tried to understand what they are trying to tell you? I have a feeling that you are hanging on to some idea that is hindering you from actually getting this. Try stepping back and starting again with this problem.
 
  • #33
sophiecentaur said:
That would imply it would only go around a bend if it were driven! If the wheels are not being braked, then there are no tangential forces on any of the wheels. Have you looked at all diagrams, read the google hits and tried to understand what they are trying to tell you? I have a feeling that you are hanging on to some idea that is hindering you from actually getting this. Try stepping back and starting again with this problem.
No I haven't yet, and I am going to just discard al preassumptions I have at this moment and read them...guess that's my best bet.I thought I knew, but I don't, not one bit, my arrogance has cost me 2 days of mental torment. And it is time I liberate myself , I will not ask anymore questions until I have squeeze every last bit of all the resources made available to me by you all good folks.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 24 ·
Replies
24
Views
5K