kuheli
- 14
- 0
if b is the mean proportion between a and c ,show that
abc(a+b+c)^3 = (ab+bc+ca)^3
abc(a+b+c)^3 = (ab+bc+ca)^3
We have: .\frac{a}{b} \,=\,\frac{b}{c} \quad\Rightarrow\quad b^2 \,=\,ac\text{If }b\text{ is the mean proportion between }a\text{ and }c,
\text{show that: }\:abc(a+b+c)^3 \:=\: (ab+bc+ca)^3
I assume that continued proportion means geometric sequence.\text{If }a,b,c,d \text{ are in continued proportion,}
\text{prove that: }\;\frac{a}{d} \:=\:\frac{a^3 +b^3 +c^3}{b^3 + c^3 +d^3}
soroban said:Hello again, kuheli!
I assume that continued proportion means geometric sequence.
So we have: .\begin{Bmatrix}a &=& a \\ b &=& ar \\ c &=& ar^2 \\ d &=& ar^3 \end{Bmatrix} .where r is the common ratio.
The left side is: .\frac{a}{d} \:=\:\frac{a}{ar^3} \:=\:\frac{1}{r^3}
The right side is: .\frac{a^3+b^3 + c^3}{b^3+c^3+d^3} \:=\:\frac{a^3 + (ar)^3 + (ar^2)^3}{(ar)^3 + (ar^2)^3 + (ar^3)^3}
. . . . =\;\frac{a^3 + a^3r^3 + a^3r^6}{a^3r^3+a^3r^6+a^3r^9} \;=\; \frac{a^3(1+r^3+r^6)}{a^3r^3(1+r^3+r^6)}
. . . . =\;\frac{1}{r^3}Q.E.D.
kuheli said:thanks a lot ...