How to Prove the Commutator Relationship for Angular Momentum Operators?

Click For Summary

Homework Help Overview

The discussion revolves around proving the commutator relationship for angular momentum operators, specifically the expression ##[\hat{L} \cdot \vec{a}, \hat{L} \cdot \vec{b}] = i \hbar \hat{L} \cdot (\vec{a} \times \vec{b})##. The subject area is quantum mechanics, focusing on angular momentum and operator algebra.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts two different approaches to prove the commutator relationship, expressing uncertainty about their validity. Some participants question the distinction between the two approaches, suggesting they appear identical. There is also a discussion about the validity of taking certain terms out of the commutator.

Discussion Status

The discussion is ongoing, with participants exploring the validity of the approaches presented. Some guidance has been offered regarding the linearity of the commutator, but there is no explicit consensus on the correctness of the original poster's methods.

Contextual Notes

Participants are considering the implications of linearity in commutators and the assumptions involved in manipulating the terms within the commutator. There is an acknowledgment of uncertainty regarding the original poster's approaches.

WendysRules
Messages
35
Reaction score
3

Homework Statement


Show that ##[\hat{L} \cdot \vec{a}, \hat{L} \cdot \vec{b}] = i \hbar \hat{L} \cdot (\vec{a} \times \vec{b})##

Homework Equations


##[\hat{L}_i, \hat{L}_j]= i \hbar \epsilon_{ijk} \hat{L}_k ##

The Attempt at a Solution


[/B]
Maybe a naive attempt, but it has been a while. I have two ways I think this can work, but both I'm not sure. they "work", but without a more trained eye, I'm not sure if they're valid.

Start with ##[\hat{L} \cdot \vec{a}, \hat{L} \cdot \vec{b}] \rightarrow [\hat{L}_ia_i, \hat{L}_jb_j] =i \hbar \epsilon_{ijk} \hat{L}_k a_ib_i \rightarrow i \hbar\hat{L}_k \epsilon_{ijk} a_i b_i = i \hbar \hat{L} \cdot (\vec{a} \times \vec{b}) ##

The other one starts similarly, but once we put it in the ##[\hat{L}_ia_i, \hat{L}_jb_j]## form, we can take out the ##a_i## and ##b_j## giving us ##a_ib_j[\hat{L}_i,\hat{L}_j]## which from here the rest follows as above, but not sure if either approach is "valid".
 
Physics news on Phys.org
How are these different ways? They look identical to me.
 
Orodruin said:
How are these different ways? They look identical to me.
Yes, i believe they are. Is it true that I am allowed to take out the ##a_i## from the brackets? I think that is what i conclude from above.
 
WendysRules said:
Is it true that I am allowed to take out the aiaia_i from the brackets?
Yes, the commutator is linear in both arguments.
 
  • Like
Likes   Reactions: WendysRules

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
3K