MHB How to prove this vector equation?

  • Thread starter Thread starter Ganesh Ujwal
  • Start date Start date
  • Tags Tags
    Vector
Ganesh Ujwal
Messages
51
Reaction score
0
Proving $||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \iff \vec{a} \perp \vec{b}$

Have some non-null $\vec{a}$ and $\vec{b}$.

View attachment 3776

I am trying to prove this to no avail:

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \iff \vec{a} \perp \vec{b}$$

-----

If we start with

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \implies \vec{a} \perp \vec{b}$$

Our hypothesis is

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}||$$

Which tells us that both horizontal sides of this triangle have the same length, so we got an isosceles triangle. Not sure what to make out of that though.

Anyway, the hypothesis is equivalent to

$$\sqrt{(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b})} = \sqrt{(\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})}$$

From here, i don't know how to proceed?
 

Attachments

  • AD3Ht_zps04ac74ca.png
    AD3Ht_zps04ac74ca.png
    1.6 KB · Views: 78
Physics news on Phys.org
Ganesh Ujwal said:
Anyway, the hypothesis is equivalent to

$$\sqrt{(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b})} = \sqrt{(\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})}$$

From here, i don't know how to proceed?
Square both sides: $(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})$. Now multiply out those brackets and simplify the resulting equation, to end up with $\vec{a}\cdot \vec{b} = 0$.
 
Back
Top