MHB How to prove this vector equation?

  • Thread starter Thread starter Ganesh Ujwal
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
To prove the vector equation ||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| implies that \vec{a} is perpendicular to \vec{b}, start by squaring both sides of the equation. This leads to the expression (\vec{a} + \vec{b})·(\vec{a} + \vec{b}) = (\vec{a} - \vec{b})·(\vec{a} - \vec{b}). Expanding both sides results in a simplified equation that ultimately shows \vec{a}·\vec{b} = 0. Therefore, the original statement is proven, confirming that ||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| if and only if \vec{a} is perpendicular to \vec{b}. This conclusion highlights the geometric relationship between the vectors.
Ganesh Ujwal
Messages
51
Reaction score
0
Proving $||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \iff \vec{a} \perp \vec{b}$

Have some non-null $\vec{a}$ and $\vec{b}$.

View attachment 3776

I am trying to prove this to no avail:

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \iff \vec{a} \perp \vec{b}$$

-----

If we start with

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}|| \implies \vec{a} \perp \vec{b}$$

Our hypothesis is

$$||\vec{a}+\vec{b}|| = ||\vec{a}-\vec{b}||$$

Which tells us that both horizontal sides of this triangle have the same length, so we got an isosceles triangle. Not sure what to make out of that though.

Anyway, the hypothesis is equivalent to

$$\sqrt{(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b})} = \sqrt{(\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})}$$

From here, i don't know how to proceed?
 

Attachments

  • AD3Ht_zps04ac74ca.png
    AD3Ht_zps04ac74ca.png
    1.6 KB · Views: 82
Physics news on Phys.org
Ganesh Ujwal said:
Anyway, the hypothesis is equivalent to

$$\sqrt{(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b})} = \sqrt{(\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})}$$

From here, i don't know how to proceed?
Square both sides: $(\vec{a} + \vec{b})\cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b})\cdot (\vec{a} - \vec{b})$. Now multiply out those brackets and simplify the resulting equation, to end up with $\vec{a}\cdot \vec{b} = 0$.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
26
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
14
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
2K