MHB How to Prove $X$ Has Lebesgue Measure Zero?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2017
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Consider a strictly increasing sequence of natural numbers $(n_k)_{k = 1}^\infty$, and suppose $X$ is the subset of $[0,2\pi]$ consisting of all $x$ such that the sequence $(\sin(n_k x))_{k = 1}^\infty$ is convergent. Prove $X$ has Lebesgue measure zero.-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi MHB community,

Due to illness, I'm posting a solution later than usual. No one answered this week's problem. You can read my solution below.
Let $f(x) = \lim_{k\to \infty} \sin(n_k x)$, for all $x\in X$. By the Riemann-Lebesgue lemma, $\int_X \cos(2n_k x)\, dx \to 0$ as $k \to \infty$. On the other hand, due to the identity $2\sin^2(n_k x) = 1 - \cos(2n_k x)$, the dominated convergence theorem gives $\int_X 2f(x)^2\, dx = \int_X 1\, dx$. Therefore, $f(x) = \pm \frac{\sqrt{2}}{2}$ for almost every $x\in X$. Again, by the Riemann-Lebesgue lemma and the dominated convergence theorem, $\int_X f(x)\, dx = 0$. Consequently, $m(X) = 0$.
 
Back
Top