How to set bounds in cylindrical coordinates analytically?

Click For Summary
The discussion focuses on setting bounds for an integral in cylindrical coordinates. The original integral is evaluated from Cartesian coordinates, and the participant struggles to correctly transform the bounds into cylindrical coordinates. A suggestion is made to visualize the area of integration on the x-y plane to clarify the limits for the transformation. The conversation highlights the importance of understanding the relationships between the variables and how to extract limits from inequalities. Ultimately, the need for clear guidance on translating these bounds into cylindrical coordinates is emphasized.
cwill53
Messages
220
Reaction score
40
Homework Statement
Evaluate the following integral in cylindrical coordinates.
$$\int_0^6 \int_0^{\frac{\sqrt{2}}{2}}\int_x^{\sqrt{1-x^2}}e^{-x^2-y^2} \, dy \, dx \, dz$$

After attempting to set the bounds in cylindrical coordinates, I got
$$\int_0^6 \int_0^{\frac{\sqrt{2}}{2}}\int_{\rho \cos\varphi }^{\sqrt{1-\rho^2 \cos^2\varphi }}e^{-\rho ^2}d\varphi \rho \, d\rho \, dz$$

But I know this doesn't make sense. Can someone explain how to switch the bounds analytically? I don't understand how to transform the bounds.

I had posted this question on the Mathematics Stack Exchange:
https://math.stackexchange.com/questions/3898044/how-to-set-bounds-in-cylindrical-coordinates
Relevant Equations
$$\begin{cases}x=\rho \cos \phi \\
y= \rho \sin \phi \\
z=z'\end{cases}$$
I'm trying to evaluate the following integral in cylindrical coordinates.
$$\int_0^6 \int_0^{\frac{\sqrt{2}}{2}}\int_x^{\sqrt{1-x^2}}e^{-x^2-y^2} \, dy \, dx \, dz$$

After attempting to set the bounds in cylindrical coordinates, I got
$$\int_0^6 \int_0^{\frac{\sqrt{2}}{2}}\int_{\rho \cos\varphi }^{\sqrt{1-\rho^2 \cos^2\varphi }}e^{-\rho ^2}d\varphi \rho \, d\rho \, dz$$

But I know this doesn't make sense. Can someone explain how to switch the bounds analytically? I don't understand how to transform the bounds.

I had posted this question on the Mathematics Stack Exchange:
https://math.stackexchange.com/questions/3898044/how-to-set-bounds-in-cylindrical-coordinates

Screenshot 2020-11-07 at 4.15.50 PM.png


This is what one poster said. But the z-coordinate, not the y-coordinate, is what varies from 0 to 6.

So the inequality should be

$$\left\lbrace \begin{array}{a}
x\leqslant \rho \sin \phi \leqslant \sqrt{1-x^{2}}\\
0 \leqslant \rho \cos \phi \leqslant \frac{1}{\sqrt{2}}
\end{array} \right\rbrace$$
However I need some assistance solving the inequality so that it would help me set the bounds.
 
Physics news on Phys.org
Draw an x-y plane and shade the area over which the integral is done
 
  • Like
Likes cwill53
BvU said:
Draw an x-y plane and shade the area over which the integral is done
Can you explain how he solved the inequalities?
 
I don't understand what he did either, how he extracted those limits from the inequality with the ##\text{min}()## in it. Maybe someone clever can explain, but I wouldn't worry about it.
 
  • Like
Likes cwill53
Dear cwill,
Forget about understanding the nonsense in stackexchange.
$$\int_0^{\sqrt 2\over 2}\;\int_x^\sqrt{1-x^2}\ ... \ dy\, dx $$ Surely you can translate this to
##\qquad\qquad x## runs from 0 to ##{1\over 2}\sqrt 2##
##\qquad\qquad y## runs from ##x## to ## \sqrt{1-x^2}##

and, once you make a sketch, the translation to bounds in ##\rho## and ## \phi## is evident.
 
  • Like
Likes cwill53
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
13
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K