How to Simplify Radical Expressions with Multiple Radicals?

Albert1
Messages
1,221
Reaction score
0
simplify:

$\sqrt {21-4 \sqrt 5 +8\sqrt 3 - 4\sqrt {15}}$
 
Mathematics news on Phys.org
Here is my solution:

$$21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}=$$

$$4+4\sqrt{3}-2\sqrt{5}+4\sqrt{3}+12-2\sqrt{15}-2\sqrt{5}-2\sqrt{15}+5=$$

$$\left(2+2\sqrt{3}-\sqrt{5} \right)^2$$

Hence:

$$\sqrt{21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}}=2+2\sqrt{3}-\sqrt{5}$$
 
MarkFL said:
Here is my solution:

$$21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}=$$

$$4+4\sqrt{3}-2\sqrt{5}+4\sqrt{3}+12-2\sqrt{15}-2\sqrt{5}-2\sqrt{15}+5=$$

$$\left(2+2\sqrt{3}-\sqrt{5} \right)^2$$

Hence:

$$\sqrt{21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}}=2+2\sqrt{3}-\sqrt{5}$$

good solution :)
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K