MHB How to Simplify Rational Expressions with Variables

  • Thread starter Thread starter captainnumber36
  • Start date Start date
  • Tags Tags
    Simplify
AI Thread Summary
To simplify the rational expression 1/(2x-y) - 2/(x+2y), a common denominator of (2x-y)(x+2y) is used, leading to the final answer of (4y-3x)/(2x^2+3xy-2y^2). For the composition of functions f(g(x)), where f(x) = 4x/(1-x) and g(x) = -2/x, the result is 8/(x-2). The expression √a/(1+√a) is simplified by rationalizing the denominator, resulting in (√a - a)/(1-a). The discussion emphasizes the importance of treating algebraic fractions similarly to numerical fractions during simplification. Understanding these methods is crucial for handling rational expressions effectively.
captainnumber36
Messages
9
Reaction score
0
Problem 1:

1 / (2x-y) - 2 / (x+2y) = ?

The answer is:

(4y-3x) / (2x^2+3xy-2y^2)

Please explain.Problem 2:

f(x) = 4x/(1-x) and g(x) - 2/x, then f(g(x)) = ?

The answer is 8/(x-2)

Please explain.Problem 3:

Square Root of a / (1+ Square Root of a) = ?

The answer is (Square Root of a - a) / (1-a)

Please explain.Thank you very much in advance.
 
Mathematics news on Phys.org
Here is a photo of the problems if it helps: 18-20.

https://imgur.com/a/Jeis8T4
bpEOa3g.jpg
 
Last edited by a moderator:
Can I ask you what $\displaystyle \frac{4}{8-4}$ is? By your reasoning for the answer to these equations, it's:

$\displaystyle \frac{4}{8-4}= \frac{\cancel{4}}{8-\cancel{4}} = \frac{1}{8}.$ But you know that $\displaystyle \frac{4}{8-4} = \frac{4}{4} = 1.$

When doing algebraic fractions, don't do anything you wouldn't do for numerical fractions.
 
The problem is to find [math]\frac{1}{2x- y}- \frac{2}{x+ 2y}[/math].

To add or subtract fractions, we need to get a "common denominator". Here the common denominator is (2x- y)(x+ 2y).

Multiply numerator and denominator of the first fraction by x+ 2y:
[math]\frac{1}{2x- y}\frac{x+ 2y}{x+ 2y}= \frac{x+ 2y}{(2x- y)(x+ 2y)}[/math].

Multiply numerator and denominator of the second fraction by 2x- y:
[math]\frac{2}{x+ 2y}\frac{2x- y}{2x- y}= \frac{4x- 2y}{(2x- y)(x+ 2y)}[/math].

Now we are ready to subtract the fractions:
[math]\frac{x+ 2y}{(2x- y)(x+ 2y)}- \frac{4x- 2y}{(2x- y)(x+ 2y)}= \frac{-3x+ 4y}{(2x- y)(x+ 2y)}[/math].

The given possible answers do not have the denominator factored so calculate [math](2x- y)(x+ 2y)= 2x(x+ 2y)- y(x+ 2y)= 2x^2+ 4xy- xy- 2y^2= 2x^2+ 3xy- 2y^2[/math].

The fraction is [math]\frac{4y- 3x}{2x^2+ 3xy- 2y^2}[/math]. That is answer "E".

To simplify [math]\frac{\sqrt{a}}{1+ \sqrt{a}}[/math], "rationalize the denominator". You should have learned earlier that [math](a+ b)(a- b)= a(a- b)+ b(a- b)= a^2- ab+ ab- b^2= a^2- b^2[/math] since the "ab" terms cancel. The "[math]a^2[/math]" and "[math]b^2[/math]" terms get rid of the square roots.

Here the "a+ b" is [math]1+ \sqrt{a}[/math]. Multiply both numerator and denominator of [math]\frac{\sqrt{a}}{1+ \sqrt{a}}[/math] by [math]1- \sqrt{a}[/math]: [math]\frac{\sqrt{a}}{1+ \sqrt{a}}\frac{1- \sqrt{a}}{1- \sqrt{a}}[/math][math]= \frac{\sqrt{a}- \sqrt{a}^2}{1^2- \sqrt{a}^2}=[/math][math] \frac{\sqrt{a}- a}{1- a}[/math].

That is answer "B".
 
Thanks to both of you! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top